Distributionally Robust Linear and Discrete Optimization with Marginals

被引:0
|
作者
Chen L. [1 ]
Ma W. [2 ]
Natarajan K. [3 ]
Simchi-Levi D. [4 ]
Yan Z. [5 ]
机构
[1] Operations Research Department, Naval Postgraduate School, Monterey, 93943, CA
[2] Graduate School of Business, Columbia University, New York, 10027, NY
[3] Engineering Systems and Design, Singapore University of Technology and Design, Singapore
[4] Institute for Data, Systems, and Society, Department of Civil and Environmental Engineering, Operations Research Center, Massachusetts Institute of Technology, Cambridge, 02139, MA
[5] School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
关键词
duality; linear programming; marginal distribution model; optimal transport;
D O I
10.1287/OPRE.2021.2243
中图分类号
学科分类号
摘要
In this paper, we study linear and discrete optimization problems in which the objective coefficients are random, and the goal is to evaluate a robust bound on the expected optimal value, where the set of admissible joint distributions is assumed to be specified only up to the marginals. We study a primal-dual formulation for this problem, and in the process, unify existing results with new results. We establish NP-hardness of computing the bound for general polytopes and identify two sufficient conditions: one based on a dual formulation and one based on sublattices that provide a class of polytopes where the robust bounds are efficiently computable. We discuss several examples and applications in areas such as scheduling. Copyright © 2022 Informs.
引用
收藏
页码:1822 / 1834
页数:12
相关论文
共 50 条
  • [41] Differential Privacy via Distributionally Robust Optimization
    Selvi, Aras
    Liu, Huikang
    Wiesemann, Wolfram
    OPERATIONS RESEARCH, 2025,
  • [42] Flow-Based Distributionally Robust Optimization
    Xu C.
    Lee J.
    Cheng X.
    Xie Y.
    IEEE Journal on Selected Areas in Information Theory, 2024, 5 : 62 - 77
  • [43] Distributionally Robust Optimization with Moment Ambiguity Sets
    Nie, Jiawang
    Yang, Liu
    Zhong, Suhan
    Zhou, Guangming
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (01)
  • [44] Wasserstein Distributionally Robust Optimization and Variation Regularization
    Gao, Rui
    Chen, Xi
    Kleywegtc, Anton J.
    OPERATIONS RESEARCH, 2024, 72 (03) : 1177 - 1191
  • [45] Calibration of Distributionally Robust Empirical Optimization Models
    Gotoh, Jun-ya
    Kim, Michael Jong
    Lim, Andrew E. B.
    OPERATIONS RESEARCH, 2021, 69 (05) : 1630 - 1650
  • [46] A Distributionally Robust Optimization Approach for Outlier Detection
    Chen, Ruidi
    Paschalidis, Ioannis Ch.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 352 - 357
  • [47] Online data assimilation in distributionally robust optimization
    Li, D.
    Martinez, S.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1961 - 1966
  • [48] Distributionally Robust Chance Constrained Geometric Optimization
    Liu, Jia
    Lisser, Abdel
    Chen, Zhiping
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (04) : 2950 - 2988
  • [49] Robust Grouped Variable Selection Using Distributionally Robust Optimization
    Chen, Ruidi
    Paschalidis, Ioannis Ch
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 1042 - 1071
  • [50] Globalized distributionally robust optimization based on samples
    Li, Yueyao
    Xing, Wenxun
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 88 (04) : 871 - 900