A Systematic Review of Cross-Lingual Sentiment Analysis: Tasks, Strategies, and Prospects

被引:5
作者
Zhao, Chuanjun [1 ]
Wu, Meiling [1 ]
Yang, Xinyi [1 ]
Zhang, Wenyue [1 ]
Zhang, Shaoxia [1 ]
Wang, Suge [2 ]
Li, Deyu [2 ]
机构
[1] Shanxi Univ Finance & Econ, Shanxi Key Lab Econ Big Data, 140 Wucheng Rd, Taiyuan 030000, Peoples R China
[2] Shanxi Univ, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, 92 Wucheng Rd, Taiyuan 030000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-lingual sentiment analysis; coarse; and fine-grained sentiment analysis; machine translation; sentiment transfer strategy; summary research; CLASSIFICATION; MODEL; TRANSLATION;
D O I
10.1145/3645106
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Traditional methods for sentiment analysis, when applied in a monolingual context, often yield less than optimal results in multilingual settings. This underscores the need for a more thorough exploration of cross-lingual sentiment analysis (CLSA) methodologies to improve analytical effectiveness. CLSA, confronted with obstacles such as linguistic disparities and a lack of resources, seeks to evaluate sentiments across a range of languages. First, the research background, challenges, existing solution ideas, and evaluation tasks of CLSA are summarized. Subsequently, new perspectives including different granularity levels, machine translation support, and sentiment transfer strategies perspectives are highlighted. Finally, potential avenues for future research are discussed.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Cross-Lingual Sentiment Relation Capturing for Cross-Lingual Sentiment Analysis
    Chen, Qiang
    Li, Wenjie
    Lei, Yu
    Liu, Xule
    Luo, Chuwei
    He, Yanxiang
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2017, 2017, 10193 : 54 - 67
  • [2] Experiments in Cross-Lingual Sentiment Analysis in Discussion Forums
    Ghorbel, Hatem
    SOCIAL INFORMATICS, SOCINFO 2012, 2012, 7710 : 138 - 151
  • [3] Linear Transformations for Cross-lingual Sentiment Analysis
    Priban, Pavel
    Smid, Jakub
    Mistera, Adam
    Kral, Pavel
    TEXT, SPEECH, AND DIALOGUE (TSD 2022), 2022, 13502 : 125 - 137
  • [4] Modeling Language Discrepancy for Cross-Lingual Sentiment Analysis
    Chen, Qiang
    Li, Chenliang
    Li, Wenjie
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 117 - 126
  • [5] Distillation Language Adversarial Network for Cross-lingual Sentiment Analysis
    Wang, Deheng
    Yang, Aimin
    Zhou, Yongmei
    Xie, Fenfang
    Ouyang, Zhouhao
    Peng, Sancheng
    2022 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2022), 2022, : 45 - 50
  • [6] A Survey of Cross-lingual Sentiment Analysis: Methodologies, Models and Evaluations
    Xu, Yuemei
    Cao, Han
    Du, Wanze
    Wang, Wenqing
    DATA SCIENCE AND ENGINEERING, 2022, 7 (03) : 279 - 299
  • [7] Latent Sentiment Model for Weakly-Supervised Cross-Lingual Sentiment Classification
    He, Yulan
    ADVANCES IN INFORMATION RETRIEVAL, 2011, 6611 : 214 - 225
  • [8] A cross-lingual sentiment topic model evolution over time
    Musa, Ibrahim Hussein
    Xu, Kang
    Liu, Feng
    Zamit, Ibrahim
    Abro, Waheed Ahmed
    Qi, Guilin
    INTELLIGENT DATA ANALYSIS, 2020, 24 (02) : 253 - 266
  • [9] Development of Sentiment Lexicon in Bengali utilizing Corpus and Cross-lingual Resources
    Sazzed, Salim
    2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), 2020, : 237 - 244
  • [10] Zero-shot learning based cross-lingual sentiment analysis for sanskrit text with insufficient labeled data
    Puneet Kumar
    Kshitij Pathania
    Balasubramanian Raman
    Applied Intelligence, 2023, 53 : 10096 - 10113