Machine-learning structural reconstructions for accelerated point defect calculations

被引:13
作者
Mosquera-Lois, Irea [1 ,2 ]
Kavanagh, Sean R. [1 ,2 ]
Ganose, Alex M. [3 ,4 ]
Walsh, Aron [1 ,2 ,5 ]
机构
[1] Imperial Coll London, Thomas Young Ctr, Exhibit Rd, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
[3] Imperial Coll London, Thomas Young Ctr, 80 Wood Ln, London W12 7TA, England
[4] Imperial Coll London, Dept Chem, 80 Wood Ln, London W12 7TA, England
[5] Ewha Womans Univ, Dept Phys, 52 Ewhayeodae-gil, Seoul 03760, South Korea
基金
英国工程与自然科学研究理事会;
关键词
INITIO MOLECULAR-DYNAMICS; INTRINSIC DEFECTS; PEROVSKITE; RECOMBINATION; POTENTIALS; TRANSITION; ENERGETICS; EFFICIENCY; VACANCIES; DATABASE;
D O I
10.1038/s41524-024-01303-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects dictate the properties of many functional materials. To understand the behaviour of defects and their impact on physical properties, it is necessary to identify the most stable defect geometries. However, global structure searching is computationally challenging for high-throughput defect studies or materials with complex defect landscapes, like alloys or disordered solids. Here, we tackle this limitation by harnessing a machine-learning surrogate model to qualitatively explore the structural landscape of neutral point defects. By learning defect motifs in a family of related metal chalcogenide and mixed anion crystals, the model successfully predicts favourable reconstructions for unseen defects in unseen compositions for 90% of cases, thereby reducing the number of first-principles calculations by 73%. Using CdSe x Te1-x alloys as an exemplar, we train a model on the end member compositions and apply it to find the stable geometries of all inequivalent vacancies for a range of mixing concentrations, thus enabling more accurate and faster defect studies for configurationally complex systems.
引用
收藏
页数:9
相关论文
共 133 条
[81]   Phase stability, point defects, and elastic properties of W-V and W-Ta alloys [J].
Muzyk, M. ;
Nguyen-Manh, D. ;
Kurzydlowski, K. J. ;
Baluc, N. L. ;
Dudarev, S. L. .
PHYSICAL REVIEW B, 2011, 84 (10)
[82]   First-principles study of native defects in anatase TiO2 [J].
Na-Phattalung, S ;
Smith, MF ;
Kim, K ;
Du, MH ;
Wei, SH ;
Zhang, SB ;
Limpijumnong, S .
PHYSICAL REVIEW B, 2006, 73 (12)
[83]   The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles [J].
Ong, Shyue Ping ;
Cholia, Shreyas ;
Jain, Anubhav ;
Brafman, Miriam ;
Gunter, Dan ;
Ceder, Gerbrand ;
Persson, Kristin A. .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 97 :209-215
[84]   Python']Python Materials Genomics (pymatgen): A robust, open-source python']python library for materials analysis [J].
Ong, Shyue Ping ;
Richards, William Davidson ;
Jain, Anubhav ;
Hautier, Geoffroy ;
Kocher, Michael ;
Cholia, Shreyas ;
Gunter, Dan ;
Chevrier, Vincent L. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 :314-319
[85]   Exploring the Latent Chemical Space of Oxygen Vacancy Formation Energy by a Machine Learning Ensemble [J].
Park, Seulyoung ;
Lee, Noki ;
Park, Jun Oh ;
Park, Jin ;
Heo, Yu Seong ;
Lee, Jaichan .
ACS MATERIALS LETTERS, 2023, 6 (01) :66-72
[86]   Electronic defects in metal oxide photocatalysts [J].
Pastor, Ernest ;
Sachs, Michael ;
Selim, Shababa ;
Durrant, James R. ;
Bakulin, Artem A. ;
Walsh, Aron .
NATURE REVIEWS MATERIALS, 2022, 7 (07) :503-521
[87]   Ephemeral data derived potentials for random structure search [J].
Pickard, Chris J. .
PHYSICAL REVIEW B, 2022, 106 (01)
[88]   First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy [J].
Piochaud, J. B. ;
Klaver, T. P. C. ;
Adjanor, G. ;
Olsson, P. ;
Domain, C. ;
Becquart, C. S. .
PHYSICAL REVIEW B, 2014, 89 (02)
[89]   AiiDA: automated interactive infrastructure and database for computational science [J].
Pizzi, Giovanni ;
Cepellotti, Andrea ;
Sabatini, Riccardo ;
Marzari, Nicola ;
Kozinsky, Boris .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 111 :218-230
[90]   Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets [J].
Polak, Maciej P. ;
Jacobs, Ryan ;
Mannodi-Kanakkithodi, Arun ;
Chan, Maria K. Y. ;
Morgan, Dane .
JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (11)