Electrical Impedance Tomography Hardware with Demodulation

被引:2
作者
Benetti, Rafael [1 ]
Cavalheiro, Andre C. M. [1 ]
Nasiri, Hossein [1 ]
Takimoto, Rogerio Y. [1 ]
Duran, Guilherme C. [1 ]
Ueda, Edson K. [1 ]
Ferro, Rafael A. O. [1 ]
Barari, Ahmad [2 ]
Martins, Thiago C. [1 ]
Tsuzuki, Marcos S. G. [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, Brazil
[2] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON, Canada
基金
巴西圣保罗研究基金会;
关键词
signal processing; electrical impedance tomography; EIT; demodulator; RECONSTRUCTION; SYSTEM;
D O I
10.1016/j.ifacol.2023.10.468
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electrical impedance tomography (EIT) is a promising imaging technology. It is portable, user-independent, and low cost (compared to other imaging technologies). There are two main approaches for EIT equipments: dynamic and absolute images. Absolute images are technologically more difficult and are limited by hardware. Phase information is required to create permittivity images. This is an ongoing research with the objective of evaluating the phase information. A new architecture with up to 64 electrodes is proposed. Each electrode has its own Howland current source and microcontroller. The proposed hardware consists of three main modules: the electrode hardware (with Howland current source and microcontroller); the demodulator algorithm; and, the electrode synchronizer. Some results are presented with the electrode hardware that demonstrate data acquisition with two electrodes. Tests with the demodulator algorithm were also presented. Simulated tests with the designed electrode synchronizer were performed, and the implementation remains, and it is considered a future work. Copyright (c) 2023 IFAC. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:5609 / 5614
页数:6
相关论文
共 21 条
[1]   USE OF AN OPTIMIZED SPATIAL PRIOR IN D-BAR RECONSTRUCTIONS OF EIT TANK DATA [J].
Alsaker, Melody ;
Mueller, Jennifer L. .
INVERSE PROBLEMS AND IMAGING, 2018, 12 (04) :883-901
[2]   Electrical Impedance Tomography Image Reconstruction Based on Neural Networks [J].
Bianchessi, Andre ;
Akamine, Rodrigo H. ;
Duran, Guilherme C. ;
Tanabi, Naser ;
Sato, Andre K. ;
Martins, Thiago C. ;
Tsuzuki, Marcos S. G. .
IFAC PAPERSONLINE, 2020, 53 (02) :15946-15951
[3]  
Camargo E.D.L.B., 2013, Ph. D. thesis
[4]  
Chen C.J., 1996, Application Report SPRA066
[5]  
Gaggero PO., 2011, Ph.D. thesis
[6]   Direct EIT Reconstructions of Complex Admittivities on a Chest-Shaped Domain in 2-D [J].
Hamilton, Sarah J. ;
Mueller, Jennifer L. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (04) :757-769
[7]  
Martins T.C., 2011, IFAC Proceedings, V44, P4989
[8]  
Martins TC, 2015, IEEE ENG MED BIO, P4069, DOI 10.1109/EMBC.2015.7319288
[9]   A review of electrical impedance tomography in lung applications: Theory and algorithms for absolute images [J].
Martins, Thiago de Castro ;
Sato, Andre Kubagawa ;
de Moura, Fernando Silva ;
Leon Bueno de Camargo, Erick Dario ;
Silva, Olavo Luppi ;
Rattis Santos, Talles Batista ;
Zhao, Zhanqi ;
Moeller, Knut ;
Passos Amato, Marcelo Brito ;
Mueller, Jennifer L. ;
Lima, Raul Gonzalez ;
Guerra Tsuzuki, Marcos de Sales .
ANNUAL REVIEWS IN CONTROL, 2019, 48 :442-471
[10]  
Martins TD, 2014, I S BIOMED IMAGING, P185, DOI 10.1109/ISBI.2014.6867840