Flow by powers of the Gauss curvature in space forms

被引:1
|
作者
Chen, Min [1 ]
Huang, Jiuzhou [2 ]
机构
[1] 1203 Burnside Hall,805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada
[2] 1030 Burnside Hall, 805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada
基金
中国国家自然科学基金;
关键词
Entropy; Gauss curvature; Monotonicity; Regularity estimates; Space forms; CONVEX HYPERSURFACES; CONTRACTION; SURFACES; ENTROPY; SHAPES;
D O I
10.1016/j.aim.2024.109579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that convex hypersurfaces under the flow by powers alpha > 0 of the Gauss curvature in space forms Nn+1 (K) of constant sectional curvature K (K = +/- 1) contract to a point in finite time T & lowast;. Moreover, convex hypersurfaces under the flow by power alpha > 1/n+2 curvature converge (after rescaling) to a limit which is the geodesic sphere in Nn+1 (K). This extends the known results in Euclidean space to space forms. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] On an inverse curvature flow in two-dimensional space forms
    Kwong, Kwok-Kun
    Wei, Yong
    Wheeler, Glen
    Wheeler, Valentina-Mira
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 285 - 308
  • [22] Gauss curvature flow on surfaces of revolution
    Jeffres, Thalia D.
    ADVANCES IN GEOMETRY, 2009, 9 (02) : 189 - 197
  • [23] Gauss curvature flow with shrinking obstacle
    Lee, Ki-Ahm
    Lee, Taehun
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 4055 - 4082
  • [24] Gauss maps of the mean curvature flow
    Wang, MT
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (2-3) : 287 - 299
  • [25] Evolution of graphs in hyperbolic space by their Gauss curvature
    Pan, Shujing
    Wei, Yong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 241
  • [26] Volume-preserving mean curvature flow of hypersurfaces in space forms
    Xu, Hongwei
    Leng, Yan
    Zhao, Entao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (03)
  • [27] The evolution of complete non-compact graphs by powers of Gauss curvature
    Choi, Kyeongsu
    Daskalopoulos, Panagiota
    Kim, Lami
    Lee, Ki-Ahm
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 757 : 131 - 158
  • [28] An inverse Gauss curvature flow to the Lp-Gauss Minkowski problem
    Chen, Bin
    Shi, Wei
    Wang, Weidong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (01)
  • [29] Mean Curvature Flow with Convex Gauss Image
    Yuanlong XIN Key Laboratory of Mathematics for Nonlinear Sciences
    ChineseAnnalsofMathematics, 2008, (02) : 121 - 134
  • [30] Gauss curvature flow: the fate of the rolling stones
    Andrews, B
    INVENTIONES MATHEMATICAE, 1999, 138 (01) : 151 - 161