A size-dependent division strategy accounts for leukemia cell size heterogeneity

被引:4
作者
Miotto, Mattia [1 ,2 ]
Scalise, Simone [1 ,2 ]
Leonetti, Marco [1 ,3 ,4 ]
Ruocco, Giancarlo [1 ,2 ]
Peruzzi, Giovanna [1 ]
Gosti, Giorgio [1 ,3 ]
机构
[1] Ist Italiano Tecnol, Ctr Life Nano & Neuro Sci, Viale Regina Elena 291, I-00161 Rome, Italy
[2] Sapienza Univ, Phys Dept, Piazzale Aldo Moro 5, Rome, Italy
[3] CNR, Inst Nanotechnol, Soft & Living Matter Lab, Rome, Italy
[4] D Tails Srl, Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
GROWTH; HOMEOSTASIS; PROLIFERATION; MECHANISMS; EVOLUTION; DYNAMICS; TIME;
D O I
10.1038/s42005-024-01743-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Heterogeneity in the size distribution of cancer cell populations is linked to drug resistance and invasiveness. However, understanding how such heterogeneity arises is still damped by the difficulties of monitoring the proliferation at the typical timescales of mammalian cells. Here, we show how to infer the growth regime and division strategy of leukemia cell populations using live cell fluorescence labeling and flow cytometry in combination with an analytical model where cell growth and division rates depend on powers of the size. We found that the dynamics of the size distribution of Jurkat T-cells is reproduced by (i) a sizer-like division strategy, with (ii) division times following an Erlang distribution and (iii) fluctuations up to ten percent of the inherited fraction of size at division. Overall, our apparatus can be extended to other cell types and environmental conditions allowing for a comprehensive characterization of the growth and division model different cells adopt. Understanding how cancer cells regulate their size is still largely an open question. The authors propose a method to infer the division strategy of leukemia cells via live cell fluorescence labeling and flow cytometry measurements combined with a mathematical model based on size-dependent growth and division rates.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Size-dependent reproductive investment in a tropical cyanolichen [J].
Favaro, Ana ;
Demetrio, Guilherme Ramos ;
Coelho, Flavia de Freitas .
BRYOLOGIST, 2022, 125 (04) :507-512
[22]   Coupled nonlinear size-dependent behaviour of microbeams [J].
Ghayesh, Mergen H. ;
Farokhi, Hamed ;
Amabili, Marco .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 112 (02) :329-338
[23]   Size-Dependent Intraguild Predation, Cannibalism, and Resource Allocation Determine the Outcome of Species Coexistence [J].
Bassar, Ronald D. ;
Coulson, Tim ;
Travis, Joseph .
AMERICAN NATURALIST, 2023, :712-724
[24]   Size-Dependent Deformation of Nanocrystalline Pt Nanopillars [J].
Gu, X. Wendy ;
Loynachan, Colleen N. ;
Wu, Zhaoxuan ;
Zhang, Yong-Wei ;
Srolovitz, David J. ;
Greer, Julia R. .
NANO LETTERS, 2012, 12 (12) :6385-6392
[25]   Biophysical and size-dependent perspectives on plant evolution [J].
Niklas, Karl J. .
JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (15) :4817-4827
[26]   Size-Dependent Localization in Polydisperse Colloidal Glasses [J].
Heckendorf, D. ;
Mutch, K. J. ;
Egelhaaf, S. U. ;
Laurati, M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (04)
[27]   Size-dependent protein segregation at membrane interfaces [J].
Schmid, Eva M. ;
Bakalar, Matthew H. ;
Choudhuri, Kaushik ;
Weichsel, Julian ;
Ann, Hyoung Sook ;
Geissler, Phillip L. ;
Dustin, Michael L. ;
Fletcher, Daniel A. .
NATURE PHYSICS, 2016, 12 (07) :704-+
[28]   Emergence of size-dependent networks on genome scale [J].
Kuznetsov, V. A. .
RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B :754-757
[29]   Size-Dependent Water Structures in Carbon Nanotubes [J].
Ohba, Tomonori .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (31) :8032-8036
[30]   Size-Dependent Biological Effects of Quercetin Nanocrystals [J].
Liu, Qian ;
Yang, Xi ;
Sun, Jianxu ;
Yu, Fanglin ;
Zhang, Hui ;
Gao, Jing ;
Zheng, Aiping .
MOLECULES, 2019, 24 (07)