A note on the well-posedness in the energy space for the generalized ZK equation posed on R×T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}\times \mathbb {T}$$\end{document}

被引:0
作者
Luiz Gustavo Farah [3 ]
Luc Molinet [1 ]
机构
[1] Université de Tours,Department of Mathematics
[2] Université d’Orléans,undefined
[3] CNRS,undefined
[4] Universidade Federal de Minas Gerais,undefined
关键词
Generalized Zakharov–Kuznetsov equation; Energy space; Global well-posedness; 35A01; 35Q53; 35Q60;
D O I
10.1007/s00030-024-00964-1
中图分类号
学科分类号
摘要
In this note, we prove the local well-posedness in the energy space of the k-generalized Zakharov–Kuznetsov equation posed on R×T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {R}\times \mathbb {T}$$\end{document} for any power non-linearity k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k\ge 2$$\end{document}. Moreover, we obtain global solutions under a precise smallness assumption on the initial data by proving a sharp Gagliardo Nirenberg type inequality.
引用
收藏
相关论文
共 62 条
[1]  
Angulo J(2002)Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case Nonlinearity 15 759-786
[2]  
Bona JL(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation Geom. Funct. Anal. 3 209-262
[3]  
Linares F(2000)Universal geometric condition for the transverse instability of solitary waves Phys. Rev. Lett. 84 2614-2617
[4]  
Scialom M(2016)Asymptotic stability of high-dimensional Zakharov–Kuznetsov solitons Arch. Ration. Mech. Anal. 220 639-710
[5]  
Bourgain J(1996)Stability and instability of some nonlinear dispersive solitary waves in higher dimension Proc. R. Soc. Edinb. Sect. A 126 89-112
[6]  
Bridges TJ(2008)Scattering for the non-radial 3D cubic nonlinear Schrödinger equation Math. Res. Lett. 15 1233-1250
[7]  
Côte R(1995)The Cauchy problem for the Zakharov–Kuznetsov equation Differ. Equ. 31 1002-1012
[8]  
Muñoz C(2011)The supercritical generalized KdV equation: global well-posedness in the energy space and below Math. Res. Lett. 18 357-377
[9]  
Pilod D(2012)A note on the 2D generalized Zakharov–Kuznetsov equation: local, global, and scattering results J. Differ. Equ. 253 2558-2571
[10]  
Simpson G(2014)Global well-posedness for the Differ. Integral Equ. 27 601-612