Geological evidence for extensive basin ejecta as plains terrains in the Moon's South Polar Region

被引:2
作者
Qiao, Le [1 ]
Xu, Luyuan [2 ]
Head, James W. [3 ]
Chen, Jian [1 ]
Zhang, Yuzheng [1 ]
Li, Bo [1 ]
Ling, Zongcheng [1 ]
机构
[1] Shandong Univ, Inst Space Sci, Sch Space Sci & Phys, Shandong Key Lab Opt Astron & Solar Terr Environm, Weihai 264209, Shandong, Peoples R China
[2] Macau Univ Sci & Technol, State Key Lab Lunar & Planetary Sci, Macau, Peoples R China
[3] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI USA
基金
中国国家自然科学基金;
关键词
WATER ICE; LUNAR; CRATERS; SURFACE; EMPLACEMENT; ORIGIN; INTRUSIONS; THICKNESS;
D O I
10.1038/s41467-024-50155-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Water ice and other volatiles that accumulated in the Moon's polar regions are among the top priority targets for lunar exploration, due to their significances in both lunar geology and extraterrestrial resource utilization. Locating suitable landing sites and determining the provenance of sampled/measured surface materials are critical for future landed missions. Here, we map over 800 sites of plains terrains in the Moon's south polar region, with a total surface area of similar to 46,000 km(2). Orbital measurements and analog studies show that most of these plains have apparently higher albedo and lower iron content than volcanic mare plains, suggesting an origin of ejecta-induced debris flows from distant impact craters, especially from the Schrodinger basin. Our findings suggest that the entire lunar south polar region probably have experienced contributions from distant basin materials. We recommend these plains as priority landing sites for future exploration of lunar polar volatiles and early bombardment history.
引用
收藏
页数:10
相关论文
共 62 条
[1]  
[Anonymous], 2017, Advancing Science of the Moon: Report of the Specific Action Team
[2]   Potential Lunar Base on Mons Malapert: Topographic, Geologic and Trafficability Considerations [J].
Basilevsky, A. T. ;
Krasilnikov, S. S. ;
Ivanov, M. A. ;
Malenkov, M. I. ;
Michael, G. G. ;
Liu, T. ;
Head, J. W. ;
Scott, D. R. ;
Lark, L. .
SOLAR SYSTEM RESEARCH, 2019, 53 (05) :383-398
[3]   A volcanic inventory of the Moon [J].
Broquet, A. ;
Andrews-Hanna, J. C. .
ICARUS, 2024, 411
[4]   Fine debris flows formed by the Orientale basin [J].
Cai, YuZhen ;
Xiao, ZhiYong ;
Ding, ChunYu ;
Cui, Jun .
EARTH AND PLANETARY PHYSICS, 2020, 4 (03) :212-222
[5]   Stratigraphy of Ice and Ejecta Deposits at the Lunar Poles [J].
Cannon, Kevin M. ;
Deutsch, Ariel N. ;
Head, James W. ;
Britt, Daniel T. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (21)
[6]   NASA's Human Landing System: The Strategy for the 2024 Mission and Future Sustainability [J].
Chavers, Greg ;
Watson-Morgan, Lisa ;
Smith, Marshall ;
Suzuki, Nantel ;
Polsgrove, Tara .
2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
[7]  
CNSA (China National Space Administration) & Roscosmos, 2021, International Lunar Research Station (ILRS) guide for partnership (V1.0)
[8]   Detection of Water in the LCROSS Ejecta Plume [J].
Colaprete, Anthony ;
Schultz, Peter ;
Heldmann, Jennifer ;
Wooden, Diane ;
Shirley, Mark ;
Ennico, Kimberly ;
Hermalyn, Brendan ;
Marshall, William ;
Ricco, Antonio ;
Elphic, Richard C. ;
Goldstein, David ;
Summy, Dustin ;
Bart, Gwendolyn D. ;
Asphaug, Erik ;
Korycansky, Don ;
Landis, David ;
Sollitt, Luke .
SCIENCE, 2010, 330 (6003) :463-468
[9]   Analyzing the ages of south polar craters on the Moon: Implications for the sources and evolution of surface water ice [J].
Deutsch, Ariel N. ;
Head, James W., III ;
Neumann, Gregory A. .
ICARUS, 2020, 336
[10]   Geological mapping of impact melt deposits at lunar complex craters Jackson and Tycho: Morphologic and topographic diversity and relation to the cratering process [J].
Dhingra, Deepak ;
Head, James W. ;
Pieters, Carle M. .
ICARUS, 2017, 283 :268-281