Deformable polarization singularity array by superimposed Ince-Gaussian beams

被引:2
作者
Wang, Jinwen [1 ]
Chen, Yun [1 ,2 ]
Cisowski, Claire Marie [3 ]
Yang, Xin [1 ]
Wang, Chengyuan [1 ]
Han, Lei [1 ]
Li, Fuli [1 ]
Gao, Hong [1 ]
Franke-Arnold, Sonja [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Shaanxi Prov KeyLaboratory Quantum Informat & Quan, Minist Educ,Key Lab Nonequilibrium Synth & Modulat, Xian 710049, Peoples R China
[2] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China
[3] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Scotland
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
OPTICAL VORTEX ARRAY; STRUCTURED LIGHT; VECTOR BEAMS; GENERATION; MODES; LASER; MANIPULATION; LATTICES;
D O I
10.1063/5.0191065
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a numerical and experimental study of polarization singularity arrays, which are generated by the coherent superposition of orthogonal, linearly polarized, even and odd Ince-Gaussian (IG) beams. The generated array consists of multiple polarization singularities of different types. The type of the polarization singularities can be adjusted effectively by switching the linear polarization states of two IG modes and by modifying the relative phase factor. In addition, we study the evolution of the arrays with the ellipticity parameter, which leads to the splitting and spatial rearrangement of polarization singularities. This work may have implications for material processing, optical trapping, and manipulation.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Formation and Control of the Polarization Structure of Vector Structured Laguerre-Gaussian Beams [J].
Yakubov, S. I. ;
Bretsko, M. V. ;
Khalilov, S. I. ;
Maksimov, D. V. ;
Lapaeva, S. N. ;
Akimova, Ya. E. .
OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (SUPPL 1) :S90-S97
[42]   Coherence singularity and evolution of partially coherent Bessel-Gaussian vortex beams [J].
Zhu, Junan ;
Zhang, Hao ;
Wang, Zhuoyi ;
Zhao, Uechun ;
Lu, Xingyuan ;
Cai, Yangjiang ;
Zhao, Hengliang .
OPTICS EXPRESS, 2023, 31 (06) :9308-9318
[43]   Configuring Polarization Singularity Array Composed of C-Point Pairs [J].
Wang, Xinglin ;
Li, Zhiyi ;
Gao, Yuan ;
Yuan, Zheng ;
Yan, Wenxiang ;
Ren, Zhi-Cheng ;
Wang, Xi-Lin ;
Ding, Jianping ;
Wang, Hui-Tian .
IEEE PHOTONICS JOURNAL, 2022, 14 (04)
[44]   Propagation dynamics of the circular Airy Gaussian vortex beams with different polarization in the parabolic potential [J].
Zhao, Jiajia ;
He, Shangling ;
Qiu, Huixin ;
Wu, You ;
Wang, Guanghui ;
Deng, Dongmei .
WAVES IN RANDOM AND COMPLEX MEDIA, 2021, :6080-6096
[45]   Propagation dynamics of rotating high-order cosine-Gaussian array beams induced by initial cross phase [J].
Sun, Zhuo-Yue ;
Wu, Jia-Ji ;
Yang, Zhen-Jun ;
Pang, Zhao-Guang ;
Wang, Hui .
NONLINEAR DYNAMICS, 2024, 112 (04) :2893-2908
[46]   Swings and roundabouts: optical Poincare spheres for polarization and Gaussian beams [J].
Dennis, M. R. ;
Alonso, Andm. A. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2087)
[47]   Rotating anisotropic Gaussian Schell-model array beams [J].
Zheng, Simin ;
Huang, Ju ;
Ji, Xiaoling ;
Cheng, Ke ;
Wang, Tao .
OPTICS COMMUNICATIONS, 2021, 484
[48]   Polarization rotation and singularity evolution of fundamental Poincare beams through anisotropic Kerr nonlinearities [J].
Wen, Bo ;
Rui, Guanghao ;
He, Jun ;
Cui, Yiping ;
Gu, Bing .
JOURNAL OF OPTICS, 2020, 22 (08)
[49]   Separation and interference of polarization in radially polarized Laguerre-Gaussian beams [J].
Liu, Rui ;
Li, Jianing ;
Huang, Jinming ;
Pan, Shenyuan ;
Wang, Youjian ;
Han, Siyu ;
Liao, Wenbin ;
Ou, Zhenwei ;
Li, Bingxuan ;
Zhang, Ge .
OPTICS EXPRESS, 2025, 33 (10) :20907-20917
[50]   Study on 1.9 μm structured lasers based on Ince-Gaussian modes superposition with multi-modulation by different directions off-axis dual-end-pump [J].
Chen, Xin-Yu ;
Yang, Xiao-Ning ;
Chen, Bing-Yan ;
Liu, Jing-Liang .
OPTICS COMMUNICATIONS, 2023, 530