MAD: Multi-Scale Anomaly Detection in Link Streams

被引:0
|
作者
Bautista, Esteban [1 ]
Brisson, Laurent [1 ]
Bothorel, Cecile [1 ]
Smits, Gregory [2 ]
机构
[1] IMT Atlantique, LUSSI Dept, Lab STICC UMR CNRS 6285, Brest, France
[2] IMT Atlantique, Comp Sci Dept, Lab STICC, UMR CNRS 6285, Brest, France
关键词
anomaly detection; temporal networks; model interpretability;
D O I
10.1145/3616855.3635834
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given an arbitrary group of computers, how to identify abnormal changes in their communication pattern? How to assess if the absence of some communications is normal or due to a failure? How to distinguish local from global events when communication data are extremely sparse and volatile? Existing approaches for anomaly detection in interaction streams, focusing on edge, nodes or graphs, lack flexibility to monitor arbitrary communication topologies. Moreover, they rely on structural features that are not adapted to highly sparse settings. In this work, we introduce MAD, a novel Multi-scale Anomaly Detection algorithm that (i) allows to query for the normality/abnormality state of an arbitrary group of observed/non-observed communications at a given time; and (ii) handles the highly sparse and uncertain nature of interaction data through a scoring method that is based on a novel probabilistic and multi-scale analysis of sub-graphs. In particular, MAD is (a) flexible: it can assess if any time-stamped subgraph is anomalous, making edge, node and graph anomalies particular instances; (b) interpretable: its multi-scale analysis allows to characterize the scope and nature of the anomalies; (c) efficient: given historical data of length.. and.. observed/non-observed communications to analyze, MAD produces an anomaly score in O(NM); and (d) effective: it significantly outperforms state-of-the-art alternatives tailored for edge, node or graph anomalies.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [1] Multi-scale Anomaly Detection with Wavelets
    Coughlin, Jack
    Perrone, Gian
    INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2017), 2017, : 102 - 108
  • [2] Multi-Scale Feature Distillation for Anomaly Detection
    Yao, Xincheng
    Li, Ruoqi
    Zhang, Chongyang
    Huang, Kefeng
    Sun, Kaiyu
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [3] Multi-Scale Anomaly Detection on Attributed Networks
    Gutierrez-Gomez, Leonardo
    Bovet, Alexandre
    Delvenne, Jean-Charles
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 678 - 685
  • [4] MAD-SGS: Multivariate Anomaly Detection with Multi-scale Self-learned Graph Structures
    Tang, Junnan
    Li, Dan
    Zheng, Zibin
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 17 - 31
  • [5] Unsupervised Multi Scale Anomaly Detection in Streams of Events
    Plessis, Quentin
    Suzuki, Masaki
    Kitahara, Takeshi
    2016 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2016,
  • [6] MULTI-SCALE SPARSE CODING WITH ANOMALY DETECTION AND CLASSIFICATION
    Akhondi-Asl, Hojjat
    Nelson, James D. B.
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [7] Anomaly detection with multi-scale pyramid grid templates
    Shifeng Li
    Yan Cheng
    Liuyang Zhao
    Yue Wang
    Multimedia Tools and Applications, 2024, 83 : 9929 - 9947
  • [8] Anomaly detection with multi-scale pyramid grid templates
    Li, Shifeng
    Cheng, Yan
    Zhao, Liuyang
    Wang, Yue
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 9929 - 9947
  • [9] Multi-Scale Anomaly Detection in Complex Dynamic Networks
    Mahyari, Arash Golibagh
    Aviyente, Selin
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 603 - 606
  • [10] Multi-scale feature reconstruction network for industrial anomaly detection
    Iqbal, Ehtesham
    Khan, Samee Ullah
    Javed, Sajid
    Moyo, Brain
    Zweiri, Yahya
    Abdulrahman, Yusra
    KNOWLEDGE-BASED SYSTEMS, 2024, 305