On determinants of matrices related to Pascal's triangle

被引:0
作者
Mereb, Martin [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, Argentina
[2] Univ Buenos Aires, Inst Invest Matemat Luis A Santalo IMAS, CONICET, Buenos Aires, Argentina
关键词
Pascal matrix; Binomial coefficient; Determinant; Low-discrepancy sequence;
D O I
10.1007/s10998-024-00581-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the symmetric Pascal triangle matrix modulo 2 has the property that each of the square sub-matrices positioned at the upper border or on the left border has determinant, computed in Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}, equal to 1 or -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}. Furthermore, we give the exact number of Pascal-like nxm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times m$$\end{document} matrices over a commutative ring with finite group of units.
引用
收藏
页码:168 / 174
页数:7
相关论文
共 13 条
  • [1] Symmetric Pascal matrices modulo p
    Bacher, R
    Chapman, R
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (04) : 459 - 473
  • [2] Bacher R., 2002, J THEOR NOMBRES BORD, V14, P19
  • [3] Normal numbers and nested perfect necklaces
    Becher, Veronica
    Carton, Olivier
    [J]. JOURNAL OF COMPLEXITY, 2019, 54
  • [4] Bicknell M., 1973, FIBONACCI QUART, V11, P469
  • [5] Bicknell M., 1973, Fibonacci Q., V11, P131
  • [6] Bugeaud Y., 2012, Distribution modulo one and Diophantine approximation, V193, pxvi+300, DOI DOI 10.1017/CBO9781139017732
  • [7] Granville A., 1995, CMS C P, V20, P253
  • [8] Hofer R., 2022, EXACT ORDER DISCREPA
  • [9] Korobov N.M., 1955, IZV AKAD NAUK SSSR M, V19, P361
  • [10] Kummer E. E., 1852, J REINE ANGEW MATH, V44, P93