Multi-bump solutions to Kirchhoff type equations with exponential critical growth in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}

被引:0
作者
Jian Zhang [1 ]
Xinyi Zhang [1 ]
机构
[1] China University of Petroleum Qingdao,College of Science
关键词
Kirchhoff type equation; Steep potential well; Vanishing potential; Exponential critical growth; Variational method; 35A15; 35J60;
D O I
10.1007/s00033-024-02282-z
中图分类号
学科分类号
摘要
In this paper, we study multi-bump solutions of the following Kirchhoff type equation: -M∫R2|∇u|2dxΔu+μV(x)+h(x)u=λf(u)inR2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -M\left( \,\,\int \limits _{\mathbb {R}^2}|\nabla u|^2 \textrm{d} x\right) \Delta u +\left( \mu V(x)+h(x)\right) u =\lambda f(u)\ \ \textrm{in} \ \ \mathbb {R}^2, \end{aligned}$$\end{document}where M is continuous with infR+M>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf _{\mathbb {R}^+}M>0$$\end{document}, V≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \ge 0$$\end{document} and its zero set has several disjoint bounded components, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are positive parameters, f has exponential critical growth. When V decays to zero at infinity, we use variational methods to obtain the existence and concentration behavior of multi-bump solutions.
引用
收藏
相关论文
共 50 条
[41]   Fučik spectrum of fractional Schrödinger operator with the unbounded potential on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} [J].
Jiaping Wang ;
Bianxia Yang .
Computational and Applied Mathematics, 2024, 43 (4)
[44]   Infinitely many solutions for a differential inclusion problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} involving p(x)-Laplacian and oscillatory terms [J].
Bin Ge ;
Qing-Mei Zhou ;
Xiao-Ping Xue .
Zeitschrift für angewandte Mathematik und Physik, 2012, 63 (4) :691-711
[45]   Multiplicity and concentration of solutions to a fractional NS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\over{S}$$\end{document}-Laplacian problem with exponential critical growth and potentials competition [J].
Wei Chen ;
Chao Ji ;
Nguyen Van Thin .
Acta Mathematica Scientia, 2025, 45 (3) :885-918
[47]   Adams’ type inequality and application to a quasilinear nonhomogeneous equation with singular and vanishing radial potentials in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {R}^4 $$\end{document} [J].
Sami Aouaoui ;
Francisco S. B. Albuquerque .
Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 (4) :1331-1349
[48]   Infinitely Many Weak Solutions for a Neumann Problem Involving p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Kirchhoff Triharmonic Operator [J].
Ahmed Ahmed ;
Mohamed Saad Bouh Elemine Vall .
International Journal of Applied and Computational Mathematics, 2024, 10 (5)
[49]   Existence of sign-changing solutions for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Hilfer fractional double-phase problem involving nonlocal nonlinearityExistence of sign-changing solutions for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Hilfer fractional...R. Ettoussi et al. [J].
Razika Ettoussi ;
Ghizlane Zineddaine ;
Abderrazak Kassidi ;
Lalla Saadia Chadli .
Journal of Pseudo-Differential Operators and Applications, 2025, 16 (2)