Multi-bump solutions to Kirchhoff type equations with exponential critical growth in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}

被引:0
作者
Jian Zhang [1 ]
Xinyi Zhang [1 ]
机构
[1] China University of Petroleum Qingdao,College of Science
关键词
Kirchhoff type equation; Steep potential well; Vanishing potential; Exponential critical growth; Variational method; 35A15; 35J60;
D O I
10.1007/s00033-024-02282-z
中图分类号
学科分类号
摘要
In this paper, we study multi-bump solutions of the following Kirchhoff type equation: -M∫R2|∇u|2dxΔu+μV(x)+h(x)u=λf(u)inR2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -M\left( \,\,\int \limits _{\mathbb {R}^2}|\nabla u|^2 \textrm{d} x\right) \Delta u +\left( \mu V(x)+h(x)\right) u =\lambda f(u)\ \ \textrm{in} \ \ \mathbb {R}^2, \end{aligned}$$\end{document}where M is continuous with infR+M>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf _{\mathbb {R}^+}M>0$$\end{document}, V≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \ge 0$$\end{document} and its zero set has several disjoint bounded components, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are positive parameters, f has exponential critical growth. When V decays to zero at infinity, we use variational methods to obtain the existence and concentration behavior of multi-bump solutions.
引用
收藏
相关论文
共 50 条
[24]   Infinitely Many Sign-Changing Solutions for Kirchhoff-Type Equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} [J].
Dongdong Qin ;
Fangfang Liao ;
Yubo He ;
Xianhua Tang .
Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (3) :1055-1070
[27]   Existence and Multiplicity of Solutions for Fractional κ(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (\xi )$$\end{document}-Kirchhoff-Type Equation [J].
J. Vanterler da C. Sousa ;
Kishor D. Kucche ;
Juan J. Nieto .
Qualitative Theory of Dynamical Systems, 2024, 23 (1)
[29]   Existence of solutions for a class of Schrödinger equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document} with magnetic field and vanishing potential [J].
Chao Ji ;
Zhao Yin .
Journal of Elliptic and Parabolic Equations, 2019, 5 (2) :251-268
[30]   Nehari-Type Ground State Solutions for Superlinear Elliptic Equations with Variable Exponent in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} [J].
Bin Ge ;
Bei-Lei Zhang ;
Gang-Ling Hou .
Mediterranean Journal of Mathematics, 2021, 18 (2)