Simultaneous Hopf and Bogdanov-Takens Bifurcations on a Leslie-Gower Type Model with Generalist Predator and Group Defence

被引:0
作者
Puchuri, Liliana [1 ]
Bueno, Orestes [2 ]
Gonzalez-Olivares, Eduardo [3 ]
Rojas-Palma, Alejandro [4 ]
机构
[1] Pontificia Univ Catol Peru, Lima, Peru
[2] Univ Pacif, Lima, Peru
[3] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile
[4] Univ Catol Maule, Fac Ciencias Bas, Dept Matemat Fis & Estadist, Talca, Chile
关键词
Predator-prey model; Non-monotonic functional response; Bogdanov-Takens bifurcation; Hopf bifurcation; PREY SYSTEM; LIMIT-CYCLES; DYNAMICS;
D O I
10.1007/s12346-024-01118-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we analyze a two-dimensional continuous-time differential equations system derived from a Leslie-Gower predator-prey model with a generalist predator and prey group defence. For our model, we fully characterize the existence and quantity of equilibrium points in terms of the parameters, and we use this to provide necessary and sufficient conditions for the existence and the explicit form of two kinds of equilibrium points: both a degenerate one with associated nilpotent Jacobian matrix, and a weak focus. These conditions allows us to determine whether the system undergoes Bogdanov-Takens and Hopf bifurcations. Consequently, we establish the existence of a simultaneous Bogdanov-Taken and Hopf bifurcation. With this double bifurcation, we guarantee the existence of a new Hopf bifurcation curve and two limit cycles on the system: an infinitesimal and another non-infinitesimal.
引用
收藏
页数:31
相关论文
共 31 条
[11]   Bifurcations and multistability on the May-Holling-Tanner predation model considering alternative food for the predators [J].
Gonzalez-Olivares, Eduardo ;
Arancibia-Ibarra, Claudio ;
Rojas-Palma, Alejandro ;
Gonzalez-Yanez, Betsabe .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (05) :4274-4298
[12]   MULTISTABILITY ON A LESLIE-GOWER TYPE PREDATOR-PREY MODEL WITH NONMONOTONIC FUNCTIONAL RESPONSE [J].
Gonzalez-Yanez, Betsabe ;
Gonzalez-Olivares, Eduardo ;
Mena-Lorca, Jaime .
BIOMAT 2006, 2007, :359-+
[13]   Bifurcation of Codimension 3 in a Predator-Prey System of Leslie Type with Simplified Holling Type IV Functional Response [J].
Huang, Jicai ;
Xia, Xiaojing ;
Zhang, Xinan ;
Ruan, Shigui .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02)
[14]   Bifurcation Analysis of a Modified Tumor-immune System Interaction Model Involving Time Delay [J].
Kayan, S. ;
Merdan, H. ;
Yafia, R. ;
Goktepe, S. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (05) :120-145
[15]  
Kuznetsov Y.A., 2004, ELEMENTS APPL BIFURC, DOI [10.1007/978-1-4757-3978-7, DOI 10.1007/978-1-4757-3978-7]
[16]   SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS [J].
LESLIE, PH .
BIOMETRIKA, 1948, 35 (3-4) :213-245
[17]  
LESLIE PH, 1960, BIOMETRIKA, V47, P219, DOI 10.2307/2333294
[18]   Bifurcations of a predator-prey system of Holling and Leslie types [J].
Li, Yilong ;
Xiao, Dongmei .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :606-620
[19]  
May RM., 2001, 1st Princeton Landmarks in Biology, DOI [10.1515/9780691206912, DOI 10.1515/9780691206912]
[20]   A Generalist Predator and the Planar Zero-Hopf Bifurcation [J].
Miguel Valenzuela, Luis ;
Falconi, Manuel ;
Ble, Gamaliel .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03)