Simultaneous Hopf and Bogdanov-Takens Bifurcations on a Leslie-Gower Type Model with Generalist Predator and Group Defence

被引:0
作者
Puchuri, Liliana [1 ]
Bueno, Orestes [2 ]
Gonzalez-Olivares, Eduardo [3 ]
Rojas-Palma, Alejandro [4 ]
机构
[1] Pontificia Univ Catol Peru, Lima, Peru
[2] Univ Pacif, Lima, Peru
[3] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile
[4] Univ Catol Maule, Fac Ciencias Bas, Dept Matemat Fis & Estadist, Talca, Chile
关键词
Predator-prey model; Non-monotonic functional response; Bogdanov-Takens bifurcation; Hopf bifurcation; PREY SYSTEM; LIMIT-CYCLES; DYNAMICS;
D O I
10.1007/s12346-024-01118-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we analyze a two-dimensional continuous-time differential equations system derived from a Leslie-Gower predator-prey model with a generalist predator and prey group defence. For our model, we fully characterize the existence and quantity of equilibrium points in terms of the parameters, and we use this to provide necessary and sufficient conditions for the existence and the explicit form of two kinds of equilibrium points: both a degenerate one with associated nilpotent Jacobian matrix, and a weak focus. These conditions allows us to determine whether the system undergoes Bogdanov-Takens and Hopf bifurcations. Consequently, we establish the existence of a simultaneous Bogdanov-Taken and Hopf bifurcation. With this double bifurcation, we guarantee the existence of a new Hopf bifurcation curve and two limit cycles on the system: an infinitesimal and another non-infinitesimal.
引用
收藏
页数:31
相关论文
共 31 条
[1]   THREE LIMIT CYCLES IN A LESLIE-GOWER PREDATOR-PREY MODEL WITH ADDITIVE ALLEE EFFECT [J].
Aguirre, Pablo ;
Gonzalez-Olivares, Eduardo ;
Saez, Eduardo .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 69 (05) :1244-1262
[2]   Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect [J].
Aguirrea, Pablo ;
Gonzalez-Olivares, Eduardo ;
Saez, Eduardo .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) :1401-1416
[3]   Stability and Hopf bifurcation in an approachable haematopoietic stem cells model [J].
Alaoui, Hamad Talibi ;
Yafia, Radouane .
MATHEMATICAL BIOSCIENCES, 2007, 206 (02) :176-184
[4]  
Andronov A.A., 1967, THEORY BIFURCATIONS
[5]  
Arancibia-Ibarra C., 2015, P 2015 INT C COMP MA, V1
[6]   Dynamics of a Leslie-Gower predator-prey model with Holling type II functional response, Allee effect and a generalist predator [J].
Arancibia-Ibarra, Claudio ;
Flores, Jose .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 :1-22
[7]   Hopf Cyclicity and Global Dynamics for a Predator-Prey System of Leslie Type with Simplified Holling Type IV Functional Response [J].
Dai, Yanfei ;
Zhao, Yulin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (13)
[8]   PREDATOR PREY SYSTEMS WITH GROUP DEFENSE - THE PARADOX OF ENRICHMENT REVISITED [J].
FREEDMAN, HI ;
WOLKOWICZ, GSK .
BULLETIN OF MATHEMATICAL BIOLOGY, 1986, 48 (5-6) :493-508
[10]   Dynamics of a modified Leslie-Gower predation model considering a generalist predator and the hyperbolic functional response [J].
Gonzalez-Olivares, Eduardo ;
Arancibia-Ibarra, Claudio ;
Rojas-Palma, Alejandro ;
Gonzalez-Yanez, Betsalbe .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) :7995-8024