CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}/CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CH}_4$$\end{document} Glow Discharge Plasma: Part I—Experimental and Numerical Study of the Reaction Pathways

被引:0
作者
Edmond Baratte [1 ]
Carolina A. Garcia-Soto [1 ]
Tiago Silva [2 ]
Vasco Guerra [3 ]
Vasile I. Parvulescu [3 ]
Olivier Guaitella [2 ]
机构
[1] Université Paris-Saclay,LPP, CNRS, École Polytechnique, Sorbonne Université
[2] University of Bucharest,Department of Organic Chemistry, Biochemistry and Catalysis
[3] Universidade de Lisboa,Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico
关键词
Glow discharge; Methanation; CO; -CH; Loki kinetic model; Benchmark experiment;
D O I
10.1007/s11090-023-10421-z
中图分类号
学科分类号
摘要
A fundamental study of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}/CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CH}_4$$\end{document} plasma is performed in a glow discharge at a few Torr. Experimental and numerical results are compared to identify the main reaction pathways. OES-based techniques and FTIR (Fourier Transform Infrared) spectroscopy are used to determine molecules densities and gas temperature. Several conditions of pressure, initial mixture and residence time are measured. The main dissociation products are found to be CO and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_2$$\end{document}. The LoKI simulation tool was used to build a simplified kinetic scheme to limit the uncertainties on rate coefficients, but sufficient to reproduce the experimental data. To this aim, only molecules containing at most one carbon atom are considered based on the experimental observations. Obtaining a good match between the experimental data and the simulation requires the inclusion of reactions involving the excited state O(1D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}(^{1}\hbox {D})$$\end{document}. The key role of CH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CH}_3$$\end{document} radical is also emphasized. The good match obtained between the experiment and the simulation allows to draw the main reaction pathways of the low-pressure CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}-CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CH}_4$$\end{document} plasmas, in particular to identify the main back reaction mechanisms for CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}. The role of CH2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CH}_2$$\end{document}O and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_2$$\end{document}O in the gas phase is also discussed in depth as they appear to play an important role on catalytic surface studied in the part II of this study.
引用
收藏
页码:1237 / 1286
页数:49
相关论文
共 86 条
  • [1] Snoeckx R(2009)Opportunities and prospects in the chemical recycling of carbon dioxide to fuels Catal Today 148 191-205
  • [2] Bogaerts A(2017)Plasma technology—A novel solution for CO2 conversion? Chem Soc Rev 46 5805-5863
  • [3] Amouroux J(2011)Carbon dioxide: a raw material and a future chemical fuel for a sustainable energy industry IOP Conf Ser Mater Sci Eng 19 17459-17475
  • [4] Siffert P(2020)Time evolution of the dissociation fraction in rf CO2 plasmas: impact and nature of back-reaction mechanisms J Phys Chem C 124 530-75
  • [5] Morillo-Candas Ana Sofia(2021)Advances in non-equilibrium CO2 plasma kinetics: a theoretical and experimental review Eur Phys J D 10 61-7282
  • [6] Guerra Vasco(2001)Plasma Sources Science and Technology Diagnostic studies of species concentrations in a capacitively coupled RF plasma containing CH4-H2-Ar Plasma Sour Sci Technol 10 7271-75
  • [7] Guaitella Olivier(2002)Plasma thermal conversion of methane to acetylene Plasma Chem Plasma Process 49 67-13683
  • [8] Pietanza LD(2001)Investigation of chemical kinetics and energy transfer in a pulsed microwave H2/CH4 plasma Plasma Sour Sci Technol 267 13679-22350
  • [9] Guaitella O(2016)Conversion of CH4 /CO2 by a nanosecond repetitively pulsed discharge J Phys D Appl Phys 124 2331-8723
  • [10] Aquilanti V(2022)Optical emission spectroscopy measurement of plasma parameters in a nanosecond pulsed spark discharge for CO2-CH4 dry reforming Spectro Acta Part A Mol Biomol Spectro 54 8704-41