Droplet microfluidic platform for extracellular vesicle isolation based on magnetic bead handling

被引:7
作者
Meggiolaro, Alessio [1 ]
Moccia, Valentina [2 ]
Sammarco, Alessandro [3 ,4 ]
Brun, Paola [5 ]
Damanti, Carlotta Caterina [6 ,7 ]
Crestani, Beatrice [1 ]
Mussolin, Lara [6 ,7 ]
Pierno, Matteo [1 ]
Mistura, Giampaolo [1 ]
Zappulli, Valentina [2 ]
Ferraro, Davide [1 ]
机构
[1] Univ Padua, Dept Phys & Astron, Via Marzolo 8, I-35131 Padua, Italy
[2] Univ Padua, Dept Comparat Biomed & Food Sci, Viale Univ 16, I-35020 Legnaro, Italy
[3] Massachusetts Gen Hosp, Dept Neurol, 149 13th St, Charlestown, MA 02129 USA
[4] Houston Methodist Res Inst, Dept Urol, 6670 Bertner Ave, Houston, TX 77030 USA
[5] Univ Padua, Dept Mol Med, Via Gabelli 63, I-35121 Padua, Italy
[6] Univ Padua, Dept Women & Child Hlth, Via Giustiniani 3, I-35128 Padua, Italy
[7] Ist Ric Pediat Citta Speranza, Corso Stati Uniti 4, I-35127 Padua, Italy
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2024年 / 409卷
关键词
Microfluidics; Extracellular vesicle; Isolation; Magnetic bead; EXOSOMES; CHIP; FLOW;
D O I
10.1016/j.snb.2024.135583
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Extracellular vesicles (EVs) are rapidly gaining in popularity as biomarkers of various diseases, acting as cargoes of valuable information from the cell of origin. Despite their important value, their current use in clinical practice is still limited. One of the most limiting factors is their isolation. In fact, conventional approaches are characterized by low purity and throughput, or poor reproducibility. Here, we present a droplet microfluidic platform specifically developed for EV isolation by affinity capture with magnetic beads. This platform is capable of processing large sample volumes (2 mL) in a relatively short time (4.5 hours), with considerable automation. In detail, EVs and magnetic beads are co -encapsulated within the same droplet, which acts promoting their mixing due to the spontaneous recirculation; this continuous agitation prevents any loss usually caused by bead sedimentation and promotes the EV capturing. Our droplet microfluidic protocol is compared to a commercially available method, showing a shorter required incubation time (about 2.5 times) and a higher capture efficiency (2.5 -folds). The microfluidic approach is therefore positively evaluated in terms of protein content, EV quantification and microRNA cargo analysis.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Microfluidic Platform for Enzyme-Linked and Magnetic Particle-Based Immunoassay [J].
Bhalla, Nikhil ;
Chung, Danny Wen Yaw ;
Chang, Yaw-Jen ;
Uy, Kimberly Jane S. ;
Ye, Yi Ying ;
Chin, Ting-Yu ;
Yang, Hao Chun ;
Pijanowska, Dorota G. .
MICROMACHINES, 2013, 4 (02) :257-271
[42]   Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform [J].
Chen, Yi-Sin ;
Lai, Charles Pin-Kuang ;
Chen, Chihchen ;
Lee, Gwo-Bin .
LAB ON A CHIP, 2021, 21 (08) :1475-1483
[43]   Isolation of PD-L1 Extracellular Vesicle Subpopulations Using DNA Computation Mediated Microfluidic Tandem Separation [J].
Lu, Yinzhu ;
Lin, Bingqian ;
Liu, Weizhi ;
Zhang, Jialu ;
Zhu, Lin ;
Yang, Chaoyong ;
Song, Yanling .
SMALL METHODS, 2023, 7 (09)
[44]   Droplet-based microfluidic washing module for magnetic particle-based assays [J].
Lee, Hun ;
Xu, Linfeng ;
Oh, Kwang W. .
BIOMICROFLUIDICS, 2014, 8 (04)
[45]   Development and Characterization of Microfluidic Devices and Systems for Magnetic Bead-Based Biochemical Detection [J].
Choi, Jin-Woo ;
Oh, Kwang W. ;
Han, Arum ;
Okulan, Nihat ;
Wijayawardhana, C. Ajith ;
Lannes, Chad ;
Bhansali, Shekhar ;
Schlueter, Kevin T. ;
Heineman, William R. ;
Halsall, H. Brain ;
Nevin, Joseph H. ;
Helmicki, Arthur J. ;
Henderson, H. Thurman ;
Ahn, Chong H. .
BIOMEDICAL MICRODEVICES, 2001, 3 (03) :191-200
[46]   Development of a magnetic bead-based method for the collection of circulating extracellular vesicles [J].
Shih, Chun-Liang ;
Chong, Kowit-Yu ;
Hsu, Shih-Che ;
Chien, Hsin-Jung ;
Ma, Ching-Ting ;
Chang, John Wen-Cheng ;
Yu, Chia-Jung ;
Chiou, Chiuan-Chian .
NEW BIOTECHNOLOGY, 2016, 33 (01) :116-122
[47]   Development and Characterization of Microfluidic Devices and Systems for Magnetic Bead-Based Biochemical Detection [J].
Jin-Woo Choi ;
Kwang W. Oh ;
Arum Han ;
C. Ajith Wijayawardhana ;
Chad Lannes ;
Shekhar Bhansali ;
Kevin T. Schlueter ;
William R. Heineman ;
H. Brian Halsall ;
Joseph H. Nevin ;
Arthur J. Helmicki ;
H. Thurman Henderson ;
Chong H. Ahn .
Biomedical Microdevices, 2001, 3 :191-200
[48]   Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system [J].
Okochi, Mina ;
Tsuchiya, Hiroyoshi ;
Kumazawa, Fumitaka ;
Shikida, Mitsuhiro ;
Honda, Hiroyuki .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2010, 109 (02) :193-197
[49]   A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection [J].
Iswardy, Edwar ;
Tsai, Tien-Chun ;
Cheng, I-Fang ;
Ho, Tzu-Chuan ;
Perng, Guey Chuen ;
Chang, Hsien-Chang .
BIOSENSORS & BIOELECTRONICS, 2017, 95 :174-180
[50]   Droplet-Based Microfluidic Temperature-Jump Platform for the Rapid Assessment of Biomolecular Kinetics [J].
Yang, Tianjin ;
Villois, Alessia ;
Kunka, Antonin ;
Grigolato, Fulvio ;
Arosio, Paolo ;
Prokop, Zbynek ;
deMello, Andrew ;
Stavrakis, Stavros .
ANALYTICAL CHEMISTRY, 2022, 94 (48) :16675-16684