Friend Recommendations with Self-Rescaling Graph Neural Networks

被引:12
|
作者
Song, Xiran [1 ]
Lian, Jianxun [2 ]
Huang, Hong [1 ]
Wu, Mingqi [3 ]
Jin, Hai [1 ]
Xie, Xing [2 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Big Data Technol & Syst, Serv Comp Technol & Syst Lab, Wuhan, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] Microsoft Gaming, Redmond, WA USA
来源
PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022 | 2022年
基金
中国国家自然科学基金;
关键词
Friend recommendation; graph neural networks; normalization;
D O I
10.1145/3534678.3539192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Friend recommendation service plays an important role in shaping and facilitating the growth of online social networks. Graph embedding models, which can learn low-dimensional embeddings for nodes in the social graph to effectively represent the proximity between nodes, have been widely adopted for friend recommendations. Recently, Graph Neural Networks (GNNs) have demonstrated superiority over shallow graph embedding methods, thanks to their ability to explicitly encode neighborhood context. This is also verified in our Xbox friend recommendation scenario, where some simplified GNNs, such as LightGCN and PPRGo, achieve the best performance. However, we observe that many GNN variants, including LightGCN and PPRGo, use a static and pre-defined normalizer in neighborhood aggregation, which is decoupled with the representation learning process and can cause the scale distortion issue. As a consequence, the true power of GNNs has not yet been fully demonstrated in friend recommendations. In this paper, we propose a simple but effective self-rescaling network (SSNet) to alleviate the scale distortion issue. At the core of SSNet is a generalized self-rescaling mechanism, which bridges the neighborhood aggregator's normalization with the node embedding learning process in an end-to-end framework. Meanwhile, we provide some theoretical analysis to help us understand the benefit of SSNet. We conduct extensive offline experiments on three large-scale real-world datasets. Results demonstrate that our proposed method can significantly improve the accuracy of various GNNs. When deployed online for one month's A/B test, our method achieves 24% uplift in adding suggested friends actions. At last, we share some interesting findings and hope the experience can motivate future applications and research in social link predictions.
引用
收藏
页码:3909 / 3919
页数:11
相关论文
共 50 条
  • [21] Polarized Graph Neural Networks
    Fang, Zheng
    Xu, Lingjun
    Song, Guojie
    Long, Qingqing
    Zhang, Yingxue
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1404 - 1413
  • [22] Convolutional Graph Neural Networks
    Gama, Fernando
    Marques, Antonio G.
    Leus, Geert
    Ribeiro, Alejandro
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 452 - 456
  • [23] ConveXplainer for Graph Neural Networks
    Pereira, Tamara A.
    Nascimento, Erik Jhones F.
    Mesquita, Diego
    Souza, Amauri H.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 588 - 600
  • [24] Survey on Graph Neural Networks
    Gkarmpounis, Georgios
    Vranis, Christos
    Vretos, Nicholas
    Daras, Petros
    IEEE ACCESS, 2024, 12 : 128816 - 128832
  • [25] Stochastic Graph Neural Networks
    Gao, Zhan
    Isufi, Elvin
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4428 - 4443
  • [26] Beyond graph neural networks with lifted relational neural networks
    Gustav Šourek
    Filip Železný
    Ondřej Kuželka
    Machine Learning, 2021, 110 : 1695 - 1738
  • [27] Beyond graph neural networks with lifted relational neural networks
    Sourek, Gustav
    Zelezny, Filip
    Kuzelka, Ondrej
    MACHINE LEARNING, 2021, 110 (07) : 1695 - 1738
  • [28] Clenshaw Graph Neural Networks
    Guo, Yuhe
    Wei, Zhewei
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 614 - 625
  • [29] AGGREGATION GRAPH NEURAL NETWORKS
    Gama, Fernando
    Marques, Antonio G.
    Ribeiro, Alejandro
    Leus, Geert
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4943 - 4947
  • [30] Improving Graph Neural Networks by combining active learning with self-training
    Georgios Katsimpras
    Georgios Paliouras
    Data Mining and Knowledge Discovery, 2024, 38 : 110 - 127