Artificial Intelligence in Endocrinology: On Track Toward Great Opportunities

被引:6
作者
Assie, Guillaume [1 ,2 ]
Allassonniere, Stephanie [3 ,4 ]
机构
[1] Univ Paris Cite, Inst Cochin, CNRS, INSERM,U1016,UMR8104, F-75014 Paris, France
[2] Hop Cochin, AP HP, Ctr Rare Adrenal Dis, Serv Endocrinol, F-75014 Paris, France
[3] Univ Paris Cite, UFR Med, F-75006 Paris, France
[4] Univ Paris Cite, Ctr Rech Cordeliers Paris, INSERM, INRIA Paris,HeKA, F-75006 Paris, France
关键词
artificial intelligence; perspectives; endocrinology;
D O I
10.1210/clinem/dgae154
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In endocrinology, the types and quantity of digital data are increasing rapidly. Computing capabilities are also developing at an incredible rate, as illustrated by the recent expansion in the use of popular generative artificial intelligence (AI) applications. Numerous diagnostic and therapeutic devices using AI have already entered routine endocrine practice, and developments in this field are expected to continue to accelerate. Endocrinologists will need to be supported in managing AI applications. Beyond technological training, interdisciplinary vision is needed to encompass the ethical and legal aspects of AI, to manage the profound impact of AI on patient/provider relationships, and to maintain an optimal balance between human input and AI in endocrinology.
引用
收藏
页码:e1462 / e1467
页数:6
相关论文
共 24 条
[1]   The value of standards for health datasets in artificial intelligence-based applications [J].
Arora, Anmol ;
Alderman, Joseph E. ;
Palmer, Joanne ;
Ganapathi, Shaswath ;
Laws, Elinor ;
Mccradden, Melissa D. ;
Oakden-Rayner, Lauren ;
Pfohl, Stephen R. ;
Ghassemi, Marzyeh ;
Mckay, Francis ;
Treanor, Darren ;
Rostamzadeh, Negar ;
Mateen, Bilal ;
Gath, Jacqui ;
Adebajo, Adewole O. ;
Kuku, Stephanie ;
Matin, Rubeta ;
Heller, Katherine ;
Sapey, Elizabeth ;
Sebire, Neil J. ;
Cole-Lewis, Heather ;
Calvert, Melanie ;
Denniston, Alastair ;
Liu, Xiaoxuan .
NATURE MEDICINE, 2023, 29 (11) :2929-2938
[2]   Patient and public involvement to build trust in artificial intelligence: A framework, tools, and case studies [J].
Banerjee, Soumya ;
Alsop, Phil ;
Jones, Linda ;
Cardinal, Rudolf N. .
PATTERNS, 2022, 3 (06)
[3]  
Bhatt Paras, 2022, JMIR Mhealth Uhealth, V10, pe35053, DOI [10.2196/35053, 10.2196/35053]
[4]   Generative artificial intelligence empowers digital twins in drug discovery and clinical trials [J].
Bordukova, Maria ;
Makarov, Nikita ;
Rodriguez-Esteban, Raul ;
Schmich, Fabian ;
Menden, Michael P. .
EXPERT OPINION ON DRUG DISCOVERY, 2024, 19 (01) :33-42
[5]  
European Commission, 2014, DAT HORIZON 2020 WOR
[6]  
European Parliament, 2024, IN PRESS
[7]  
European Society of Endocrinology, 2024, DAT ESE FOC AR
[8]   Threats by artificial intelligence to human health and human existence [J].
Federspiel, Frederik ;
Mitchell, Ruth ;
Asokan, Asha ;
Umana, Carlos ;
McCoy, David .
BMJ GLOBAL HEALTH, 2023, 8 (05)
[9]   Addressing health disparities in the Food and Drug Administration's artificial intelligence and machine learning regulatory framework [J].
Ferryman, Kadija .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (12) :2016-2019
[10]   Recommended practices and ethical considerations for natural language processing-assisted observational research: A scoping review [J].
Fu, Sunyang ;
Wang, Liwei ;
Moon, Sungrim ;
Zong, Nansu ;
He, Huan ;
Pejaver, Vikas ;
Relevo, Rose ;
Walden, Anita ;
Haendel, Melissa ;
Chute, Christopher G. ;
Liu, Hongfang .
CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2023, 16 (03) :398-411