DiscoCSINet: Dissymmetric Convolution Neural Network for CSI Feedback in FDD Massive MIMO System

被引:0
作者
Yang, Yang [1 ,3 ]
Xin, Yutong [1 ]
Lu, Zejian [2 ]
Lee, Yong [3 ]
Zhou, Kun [1 ]
Lee, Jemin [3 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] China Acad Elect & Informat Technol, Beijing 100041, Peoples R China
[3] Yonsei Univ, Dept Elect & Elect Engn, Seoul 03722, South Korea
来源
IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM | 2023年
基金
中国国家自然科学基金;
关键词
FDD Massive MIMO; CSI feedback; dissymmetric convolution; lightweight neural network; model fusion;
D O I
10.1109/GLOBECOM54140.2023.10436909
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Channel state information (CSI) is an essential aspect of the frequency division duplex (FDD) massive multiple-input multiple-output (MIMO) system since there is no reciprocity between the bidirectional channels. However, the CSI transmission often requires significant channel resources because there may be hundreds of antennas transmitting and receiving data simultaneously. In this paper, we design an dissymmetric convolution neural network for CSI feedback (DiscoCSINet). Specifically, we utilize the dissymmetric convolution blocks (Disco-Blocks) to address the CSI compression and decompression issue, where convolution's feature extraction capability can be enhanced. To improve the storage efficiency of the receiver, we also employ a lightweight approach of the DiscoCSINet. Furthermore, we explore the fusion strategies of multi-rate and multi-scenario, respectively, and strengthen the generalization capability of the DiscoCSINet in practical settings. Experiment results indicate that the proposed DiscoCSINet can notably enhance the NMSE and cosine similarity rho, especially in outdoor scenarios. Additionally, the proposed lightweight approach and multi-model fusion strategies can greatly decrease the parameter amounts by over 80% and 89%, respectively, but the performance are only slightly decayed.
引用
收藏
页码:1489 / 1494
页数:6
相关论文
共 8 条
[1]   DEEP LEARNING AT THE EDGE FOR CHANNEL ESTIMATION IN BEYOND-5G MASSIVE MIMO [J].
Belgiovine, Mauro ;
Sankhe, Kunal ;
Bocanegra, Carlos ;
Roy, Debashri ;
Chowdhury, Kaushik R. .
IEEE WIRELESS COMMUNICATIONS, 2021, 28 (02) :19-25
[2]   Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO [J].
Cao, Zheng ;
Shih, Wan-Ting ;
Guo, Jiajia ;
Wen, Chao-Kai ;
Jin, Shi .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (08) :2624-2628
[3]  
Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TWC.2020.2968430, 10.1109/TNSE.2020.2997359]
[4]   Deep Learning for Physical-Layer 5G Wireless Techniques: Opportunities, Challenges and Solutions [J].
Huang, Hongji ;
Guo, Song ;
Gui, Guan ;
Yang, Zhen ;
Zhang, Jianhua ;
Sari, Hikmet ;
Adachi, Fumiyuki .
IEEE WIRELESS COMMUNICATIONS, 2020, 27 (01) :214-222
[5]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[6]   Deep Learning for Massive MIMO CSI Feedback [J].
Wen, Chao-Kai ;
Shih, Wan-Ting ;
Jin, Shi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) :748-751
[7]   Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems [J].
Ye, Hongyuan ;
Gao, Feifei ;
Qian, Jing ;
Wang, Hao ;
Li, Geoffrey Ye .
IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) :1742-1746
[8]   Downlink CSI Feedback Algorithm With Deep Transfer Learning for FDD Massive MIMO Systems [J].
Zeng, Jun ;
Sun, Jinlong ;
Gui, Guan ;
Adebisi, Bamidele ;
Ohtsuki, Tomoaki ;
Gacanin, Haris ;
Sari, Hikmet .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (04) :1253-1265