An Optical Frequency Domain Reflectometer's (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing

被引:11
作者
Belokrylov, Maxim E. [1 ]
Kambur, Dmitry A. [1 ,2 ]
Konstantinov, Yuri A. [1 ]
Claude, D. [1 ]
Barkov, Fedor L. [1 ]
机构
[1] Russian Acad Sci, Perm Fed Res Ctr, Ural Branch, 13a Lenin St, Perm 614990, Russia
[2] Perm Natl Res Polytech Univ, Appl Math Dept, Komsomolsky Ave 29, Perm 614990, Russia
关键词
optical frequency domain reflectometry; OFDR; optical measurements; empirical mode decomposition; auxiliary interferometer; gas cell; TIME; SYSTEM; SAFETY;
D O I
10.3390/s24041253
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We describe a method for reducing the cost of optical frequency domain reflectometer (OFDR) hardware by replacing two reference channels, including an auxiliary interferometer and a gas cell, with a single channel. To extract useful information, digital signal processing methods were used: digital frequency filtering, as well as empirical mode decomposition. It is shown that the presented method helps to avoid the use of an unnecessary analog-to-digital converter and photodetector, while the OFDR trace is restored by the equal frequency resampling (EFR) algorithm without loss of high resolution and with good measurement repeatability.
引用
收藏
页数:18
相关论文
共 43 条
  • [1] Method for Increasing the Signal-to-Noise Ratio of Rayleigh Back-Scattered Radiation Registered by a Frequency Domain Optical Reflectometer Using Two-Stage Erbium Amplification
    Belokrylov, M. E.
    Claude, D.
    Konstantinov, Yu. A.
    Karnaushkin, P. V.
    Ovchinnikov, K. A.
    Krishtop, V. V.
    Gilev, D. G.
    Barkov, F. L.
    Ponomarev, R. S.
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2023, 66 (05) : 761 - 768
  • [2] Borchi F., 2017, J. Acoust. Soc. Am, V141, P3804, DOI [10.1121/1.4988399, DOI 10.1121/1.4988399]
  • [3] Butov O.V., 2018, P OPTICAL SENSING DE, P106801
  • [4] INTERNET OF THINGS AND SMART CITIES
    Chan, Vincent W. S.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2021, 59 (10) : 4 - 6
  • [5] Channi HK., 2022, SMART SENSOR NETWORK
  • [6] Active Thermostatting of the Reference Optical Fiber Section Method in a Distributed Fiber-Optical Temperature Sensor
    Chernutsky, A. O.
    Khan, R. I.
    Gritsenko, T. V.
    Koshelev, K. I.
    Zhirnov, A. A.
    Pnev, A. B.
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2023, 66 (05) : 824 - 831
  • [7] Distributed Acoustic Sensor Systems for Vehicle Detection and Classification
    Chiang, Chia-Yen
    Jaber, Mona
    Chai, Kok Keong
    Loo, Jonathan
    [J]. IEEE ACCESS, 2023, 11 : 31293 - 31303
  • [8] Cuny T., 2016, P 78 EAGE C EXHIBITI
  • [9] Quasi-Distributed Acoustic Sensing Based on Orthogonal Codes and Empirical Mode Decomposition
    Deng, Ziwen
    Wan, Anchi
    Xu, Ruobing
    Wang, Yuyao
    Jiang, Jialin
    Wang, Zinan
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (20) : 24591 - 24600
  • [10] Direct Passive Participation: Aiming for Accuracy and Citizen Safety in the Era of Big Data and the Smart City
    Dooley, Ken
    [J]. SMART CITIES, 2021, 4 (01): : 336 - 348