Optimization based on electro-thermo-mechanical modeling of the high electron mobility transistor (HEMT)

被引:2
作者
El Hami A. [1 ]
Haddar M. [1 ]
Radi B. [1 ,2 ]
El Hami N. [1 ]
Amar A. [1 ,2 ]
机构
[1] Normandie University, INSA Rouen, LMN, Rouen
[2] Hassan First University of Settat, FST, LIMII, BP: 577, Route de Casa, Settat
关键词
Electro-thermomechanical; HEMT; KA-CMA-ES; Optimization;
D O I
10.1051/smdo/2021035
中图分类号
学科分类号
摘要
The electro-thermomechanical modeling study of the High Electron Mobility Transistor (HEMT) has been presented, all the necessary equations are detailed and coupled. This proposed modeling by the finite element method using the Comsol multiphysics software, allowed to study the multiphysics behaviour of the transistor and to observe the different degradations in the structure of the component. Then, an optimization study is necessary to avoid failures in the transistor. In this work, we have used the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) method to solve the optimization problem, but it requires a very important computing time. Therefore, we proposed the kriging assisted CMA-ES method (KA-CMA-ES), it is an integration of the kriging metamodel in the CMA-ES method, it allows us to solve the problem of optimization and overcome the constraint of calculation time. All these methods are well detailed in this paper. The coupling of the finite element model developed on Comsol Multiphysics and the KA-CMA-ES method on Matlab software, allowed to optimize the multiphysics behaviour of the transistors. We made a comparison between the results of the numerical simulations of the initial state and the optimal state of the component. It was found that the proposed KA-CMA-ES method is efficient in solving optimization problems. © A. Amar et al., Published by EDP Sciences, 2022.
引用
收藏
相关论文
共 41 条
  • [1] Sajjadi Jaghargh S.S., Orouji A.A., An AlGaN/GaN HEMT by a reversed pyramidal channel layer: Investigation and fundamental physics, Int. J. Numer. Modell., pp. 13-18, (2020)
  • [2] Mimura T., Hiyamizu S., Fujii T., Nanbu K., A new fieldeffect transistor with selectively doped gaas/n-alxga1-xas heterojunctions, Jpn. J. Appl. Phys., 19, (1980)
  • [3] Garcia S., Niguez-De-La-Torre I., Mateos J., Gonzalez T., Perez S., Impact of substrate and thermal boundary resistance on the performance of AlGaN/GaN HEMTs analyzed by means of electro-thermal Monte Carlo simulations, Semiconduct. Sci. Technol., 31, (2016)
  • [4] Wang L., Liu J., Zhou W., Xu Z., Wu Y., Tao H., A novel method to dynamic thermal impedance and channel temperature extraction of GaN HEMTs, Int. J. Numer. Modell., pp. 1-9, (2019)
  • [5] Jeon D.Y., Kim D.K., Park S.J., Koh Y., Cho C.Y., Kim G.T., Park K.H., Effects of series resistance and interface properties on the operation of AlGaN/GaN high electron mobility transistors, Microelectr. Eng., 199, pp. 40-44, (2018)
  • [6] Dong Y., Xie Z., Chen D., Lu H., Zhang R., Zheng Y., Effects of dissipative substrate on the performances of enhancement mode AlInN/GaN HEMTs, Int. J. Numer. Modell. Electr. Netw. Dev. Fields, 32, pp. 1-9, (2019)
  • [7] Chen Y., Xu Y., Wang F., Wang C., Zhang Y., Yan B., Xu R., Improved quasi-physical zone division model with analytical electrothermal Ids model for AlGaN/GaN heterojunction high electron mobility transistors, Int. J. Numer. Modell. Electr. Netw. Dev. Fields, pp. 1-17, (2019)
  • [8] Das J., Oprins H., Ji H., Sarua A., Ruythooren W., Derluyn J., Germain M., Borghs G., A temperature analysis of high-power algan/gan hemts, dans Proceedings of 12th International Workshop on Thermal Investigations of ICs, pp. 2-5, (2006)
  • [9] Jia Y., Xu Y., Guo Y., A universal scalable thermal resistance model for compact large-signalmodel of AlGaN/GaNHEMTs, IEEE Trans. Microw. Theory Tech., 66, pp. 4419-4429, (2018)
  • [10] Belmabrouk H., Chouchen B., Feddi E.M., Dujardin F., Tlili I., Ben Ayed M., Gazzah M.H., Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors, Optik, (2019)