Modeling Metformin and Dapagliflozin Pharmacokinetics in Chronic Kidney Disease

被引:0
作者
Shahidehpour, Andrew [1 ]
Rashid, Mudassir [1 ]
Askari, Mohammad Reza [1 ]
Ahmadasas, Mohammad [1 ]
Abdel-Latif, Mahmoud [1 ]
Fritschi, Cynthia [2 ]
Quinn, Lauretta [2 ]
Reutrakul, Sirimon [3 ]
Bronas, Ulf G. [4 ]
Cinar, Ali [1 ]
机构
[1] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
[2] Univ Illinois, Dept Biobehav Nursing Sci, Chicago, IL USA
[3] Univ Illinois, Coll Med, Chicago, IL USA
[4] Columbia Univ New York City, Sch Nursing & Rehabil Med, New York, NY USA
来源
AAPS JOURNAL | 2024年 / 26卷 / 05期
关键词
Chronic kidney disease; Dapagliflozin; Metformin; Modeling; Pharmacokinetics; CLINICAL PHARMACOKINETICS; CONVOLUTION;
D O I
10.1208/s12248-024-00962-2
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Chronic kidney disease (CKD) is a complication of diabetes that affects circulating drug concentrations and elimination of drugs from the body. Multiple drugs may be prescribed for treatment of diabetes and co-morbidities, and CKD complicates the pharmacotherapy selection and dosing regimen. Characterizing variations in renal drug clearance using models requires large clinical datasets that are costly and time-consuming to collect. We propose a flexible approach to incorporate impaired renal clearance in pharmacokinetic (PK) models using descriptive statistics and secondary data with mechanistic models and PK first principles. Probability density functions were generated for various drug clearance mechanisms based on the degree of renal impairment and used to estimate the total clearance starting from glomerular filtration for metformin (MET) and dapagliflozin (DAPA). These estimates were integrated with PK models of MET and DAPA for simulations. MET renal clearance decreased proportionally with a reduction in estimated glomerular filtration rate (eGFR) and estimated net tubular transport rates. DAPA total clearance varied little with renal impairment and decreased proportionally to reported non-renal clearance rates. Net tubular transport rates were negative to partially account for low renal clearance compared with eGFR. The estimated clearance values and trends were consistent with MET and DAPA PK characteristics in the literature. Dose adjustment based on reduced clearance levels estimated correspondingly lower doses for MET and DAPA while maintaining desired dose exposure. Estimation of drug clearance rates using descriptive statistics and secondary data with mechanistic models and PK first principles improves modeling of CKD in diabetes and can guide treatment selection.
引用
收藏
页数:12
相关论文
共 35 条
  • [1] Andronov A, 2023, Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications, P181, DOI [10.1007/978-3-031-40055-19, DOI 10.1007/978-3-031-40055-19]
  • [2] AstraZeneca Pharmaceuticals LP., 2020, Farxiga (dapagliflozin) Tablets
  • [3] Bristol-Myers Squibb Company, 2017, Glucophage
  • [4] Does Secretory Clearance Follow Glomerular Filtration Rate in Chronic Kidney Diseases? Reconsidering the Intact Nephron Hypothesis
    Chapron, A.
    Shen, D. D.
    Kestenbaum, B. R.
    Robinson-Cohen, C.
    Himmelfarb, J.
    Yeung, C. K.
    [J]. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2017, 10 (05): : 395 - 403
  • [5] Type 2 diabetes mellitus
    DeFronzo, Ralph A.
    Ferrannini, Ele
    Groop, Leif
    Henry, Robert R.
    Herman, William H.
    Holst, Jens Juul
    Hu, Frank B.
    Kahn, C. Ronald
    Raz, Itamar
    Shulman, Gerald I.
    Simonson, Donald C.
    Testa, Marcia A.
    Weiss, Ram
    [J]. NATURE REVIEWS DISEASE PRIMERS, 2015, 1
  • [6] A dosing algorithm for metformin based on the relationships between exposure and renal clearance of metformin in patients with varying degrees of kidney function
    Duong, Janna K.
    Kroonen, M. Y. A. M.
    Kumar, S. S.
    Heerspink, H. L.
    Kirkpatrick, C. M.
    Graham, G. G.
    Williams, K. M.
    Day, R. O.
    [J]. EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2017, 73 (08) : 981 - 990
  • [7] The variability in beta-cell function in placebo-treated subjects with type 2 diabetes: application of the weight-HbA1c-insulin-glucose (WHIG) model
    Duong, Janna K.
    de Winter, Willem
    Choy, Steve
    Plock, Nele
    Naik, Himanshu
    Krauwinkel, Walter
    Visser, Sandra A. G.
    Verhamme, Katia M.
    Sturkenboom, Miriam C.
    Stricker, B. H.
    Danhof, Meindert
    [J]. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2017, 83 (03) : 487 - 497
  • [8] Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2023
    ElSayed, Nuha A.
    Aleppo, Grazia
    Aroda, Vanita R.
    Bannuru, Raveendhara R.
    Brown, Florence M.
    Bruemmer, Dennis
    Collins, Billy S.
    Hilliard, Marisa E.
    Isaacs, Diana
    Johnson, Eric L.
    Kahan, Scott
    Khunti, Kamlesh
    Leon, Jose
    Lyons, Sarah K.
    Perry, Mary Lou
    Prahalad, Priya
    Pratley, Richard E.
    Seley, Jane Jeffrie
    Stanton, Robert C.
    Gabbay, Robert A.
    [J]. DIABETES CARE, 2023, 46 : S140 - S157
  • [9] Fritzen Katharina, 2018, J Diabetes Sci Technol, V12, P976, DOI 10.1177/1932296818785642
  • [10] Dapagliflozin Binds Specifically to Sodium-Glucose Cotransporter 2 in the Proximal Renal Tubule
    Ghezzi, Chiara
    Yu, Amy S.
    Hirayama, Bruce A.
    Kepe, Vladimir
    Liu, Jie
    Scafoglio, Claudio
    Powell, David R.
    Huang, Sung-Cheng
    Satyamurthy, Nagichettiar
    Barrio, Jorge R.
    Wright, Ernest M.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2017, 28 (03): : 802 - 810