A NEW PROPERTY OF THE WALLIS POWER FUNCTION

被引:0
作者
Yang, Zhen-hang
Tian, Jing-feng
机构
关键词
Wallis power function; gamma function; asymptotic expansion; complete monotonicity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wallis power function is defined on (- min {p, q} , oo) by Gamma (x +p) 1/(p-q) Wp,q (x) = if p =?q and Wp,p (x) = e psi (x+p). Gamma (x + q) Let pi, qi E R with 0 < <delta>i = pi - qi 1, theta i = (1 - delta i) /2 for i = 1,2 and p1 + q1 = p2 + q2 = 2 sigma + 1. We prove that, if q1 q2 then for any integer m E N, the function [?m x ?-> (-1)m ln Wp1,q1 (x) a2k (theta 1, theta 2) Wp2,q2 (x) - (2k + 1) (2k) (x + sigma )2k k=1 is completely monotonic on (-sigma, oo), where B2k+1 (theta 2) B2k+1 (theta 1) a2k (theta 1, theta 2) = - . theta 2 - 1/2 theta 1 - 1/2 This extends and generalizes some known results.
引用
收藏
页码:2021 / 2034
页数:14
相关论文
共 53 条
[1]   Two new asymptotic expansions of the ratio of two gamma functions [J].
Abad, J ;
Sesma, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (02) :359-363
[2]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, P55
[3]   On some inequalities for the gamma and psi functions [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :373-389
[4]  
ATANASSOV RD, 1988, DOKL BOLG AKAD NAUK, V41, P21
[5]  
Bernstein S.N., 1928, ACTA MATH-DJURSHOLM, V52, P1, DOI [10.1007/BF02592679, DOI 10.1007/BF02592679]
[6]  
Boyd AV., 1960, Scandinavian Actuarial Journal, V1960, P134, DOI [10.1080/03461238.1960.10410585, DOI 10.1080/03461238.1960.10410585]
[7]   ASYMPTOTIC EXPANSIONS OF THE MULTIPLE QUOTIENTS OF GAMMA FUNCTIONS WITH APPLICATIONS [J].
Buric, Tomislav ;
Elezovic, Neven ;
Simic, Ratko .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04) :1159-1170
[8]   Asymptotic expansions of the gamma function and Wallis function through polygamma functions [J].
Buric, Tomislav ;
Elezovic, Neven ;
Vuksic, Lenka .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (02) :163-172
[9]   Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions [J].
Buric, Tomislav ;
Elezovic, Neven .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (11) :3315-3331
[10]  
BUSTOZ J, 1986, MATH COMPUT, V47, P659, DOI 10.1090/S0025-5718-1986-0856710-6