DYNAMIC BOUNDARY CONDITIONS FOR TIME DEPENDENT FRACTIONAL OPERATORS ON EXTENSION DOMAINS

被引:0
|
作者
Creo, Simone [1 ]
Lancia, Maria Rosaria [1 ]
机构
[1] Sapienza Univ, Dipartimento Sci Base & Applicate Ingn, via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
BESOV-SPACES; NONEXISTENCE; DIFFUSION; EXISTENCE; EQUATIONS;
D O I
10.57262/ade029-0910-727
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parabolic semilinear non-autonomous problem ( P similar to) for a fractional time dependent operator Bs,t boundary conditions in a possibly non-smooth domain omega subset of RN. We prove existence and uniqueness of the mild solution of the associated semilinear abstract Cauchy problem (P) via an evolution family U(t, tau). We then prove that the mild solution of the abstract problem (P) actually solves problem ( P similar to) via a generalized fractional Green formula.
引用
收藏
页码:727 / 756
页数:30
相关论文
共 50 条