The global existence and uniqueness of smooth solutions to a fluid-particle interaction model in the flowing regime

被引:0
作者
Zheng, Lin [1 ]
Wang, Shu [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Math & Stat, Zhengzhou 450046, Peoples R China
[2] Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
关键词
fluid-particle; flowing regime; global existence; EQUATIONS;
D O I
10.1007/s10473-024-0513-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime in & Ropf;3. Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces, the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
引用
收藏
页码:1877 / 1885
页数:9
相关论文
共 16 条
[1]  
Ballew J, 2014, AIMS SER APPL MATH, V8, P301
[2]   Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system [J].
Ballew, Joshua ;
Trivisa, Konstantina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 :1-19
[3]  
Baranger C., 2005, ESAIM: Proceedings and Surveys, V14, P41
[4]   Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression [J].
Berres, S ;
Bürger, R ;
Karlsen, KH ;
Tory, EM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :41-80
[5]   On the dynamics of a fluid-particle interaction model: The bubbling regime [J].
Carrillo, J. A. ;
Karper, T. ;
Trivisa, K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (08) :2778-2801
[6]   Stability and asymptotic analysis of a fluid-particle interaction model [J].
Carrillo, Jose A. ;
Goudon, Thierry .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (09) :1349-1379
[7]   GLOBAL EXISTENCE AND TIME-DECAY ESTIMATES OF SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES-SMOLUCHOWSKI EQUATIONS [J].
Chen, Yingshan ;
Ding, Shijin ;
Wang, Wenjun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) :5287-5307
[8]   Global well-posedness of classical solutions to a fluid particle interaction model in R3 [J].
Ding, Shijin ;
Huang, Bingyuan ;
Wen, Huanyao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8666-8717
[9]   Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime [J].
Fang, Daoyuan ;
Zi, Ruizhao ;
Zhang, Ting .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (03)
[10]   LOCAL CLASSICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES-SMOLUCHOWSKI EQUATIONS WITH VACUUM [J].
Huang, Bingyuan ;
Ding, Shijin ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06) :1717-1752