Genomic prediction and QTL analysis for grain Zn content and yield in Aus-derived rice populations

被引:0
作者
Hore, Tapas Kumer [1 ,2 ,3 ]
Balachiranjeevi, C. H. [1 ]
Inabangan-Asilo, Mary Ann [1 ]
Deepak, C. A. [4 ]
Palanog, Alvin D. [2 ]
Hernandez, Jose E. [2 ]
Gregorio, Glenn B. [2 ,5 ]
Dalisay, Teresita U. [2 ]
Diaz, Maria Genaleen Q. [2 ]
Neto, Roberto Fritsche [6 ]
Kader, Md. Abdul [3 ]
Biswas, Partha Sarathi [3 ]
Swamy, B. P. Mallikarjuna [1 ]
机构
[1] Int Rice Res Inst IRRI, DAPO Box 4031, Los Banos, Laguna, Philippines
[2] Univ Philippines Los Banos UPLB, Coll Los Banos, Los Banos, Laguna, Philippines
[3] Bangladesh Rice Res Inst, Gazipur, Bangladesh
[4] Univ Agr Sci, Bangalore, Karnataka, India
[5] Southeast Asian Reg Ctr Grad Study & Res Agr SEARC, Los Banos, Philippines
[6] Louisiana State Univ, LSU Ag Ctr, Baton Rouge, LA USA
关键词
Rice; RIL; Zn; Yield; GWAS; QTL; Genes; QUANTITATIVE TRAIT LOCI; DEVELOPING-TISSUES; MINERAL ELEMENTS; ZINC; BIOFORTIFICATION; TRANSPORTER; TRANSLOCATION; ASSOCIATION; IMPROVEMENT; PROGRESS;
D O I
10.1007/s13562-024-00886-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Zinc (Zn) biofortification of rice can address Zn malnutrition in Asia. Identification and introgression of QTLs for grain Zn content and yield (YLD) can improve the efficiency of rice Zn biofortification. In four rice populations we detected 56 QTLs for seven traits by inclusive composite interval mapping (ICIM), and 16 QTLs for two traits (YLD and Zn) by association mapping. The phenotypic variance (PV) varied from 4.5% (qPN(4.1)) to 31.7% (qPH(1.1)). qDF(1.1), qDF(7.2), qDF(8.1), qPH(1.1), qPH(7.1), qPL(1.2), qPL(9.1,) qZn(5.1), qZn(5.2), qZn(6.1) and qZn(7.1) were identified in both dry and wet seasons; qZn(5.1), qZn(5.2), qZn(5.3,) qZn(6.2,) qZn(7.1) and qYLD(1.2) were detected by both ICIM and association mapping. qZn(7.1) had the highest PV (17.8%) and additive effect (2.5 ppm). Epistasis and QTL co-locations were also observed for different traits. The multi-trait genomic prediction values were 0.24 and 0.16 for YLD and Zn respectively. qZn(6.2) was co-located with a gene (OsHMA2) involved in Zn transport. These results are useful for Zn biofortificatiton of rice.
引用
收藏
页码:216 / 236
页数:21
相关论文
共 97 条
  • [71] Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-parental Recombinant Inbred Line Mapping Population in Pearl Millet
    Singhal, Tripti
    Satyavathi, C. Tara
    Singh, S. P.
    Kumar, Aruna
    Sankar, S. Mukesh
    Bhardwaj, C.
    Mallik, M.
    Bhat, Jayant
    Anuradha, N.
    Singh, Nirupma
    [J]. FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [72] Identification of Promising RILs for High Grain Zinc Through Genotype x Environment Analysis and Stable Grain Zinc QTL Using SSRs and SNPs in Rice (Oryza sativa L.)
    Suman, K.
    Neeraja, C. N.
    Madhubabu, P.
    Rathod, Santosha
    Bej, Sonali
    Jadhav, K. P.
    Kumar, J. Aravind
    Chaitanya, U.
    Pawar, Smita C.
    Rani, Surekha H.
    Subbarao, Lella V.
    Voleti, Sitapati R.
    [J]. FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [73] Development and characterization of GR2E Golden rice introgression lines
    Swamy, B. P. Mallikarjuna
    Marundan, Severino, Jr.
    Samia, Mercy
    Ordonio, Reynante L.
    Rebong, Democrito B.
    Miranda, Ronalyn
    Alibuyog, Anielyn
    Rebong, Anna Theresa
    Tabil, Ma Angela
    Suralta, Roel R.
    Alfonso, Antonio A.
    Biswas, Partha Sarathi
    Kader, Md Abdul
    Reinke, Russell F.
    Boncodin, Raul
    MacKenzie, Donald J.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [74] Identification of genomic regions associated with agronomic and biofortification traits in DH populations of rice
    Swamy, B. P. Mallikarjuna
    Descalsota, Gwen Iris L.
    Chau Thanh Nha
    Amparado, Amery
    Inabangan-Asilo, Mary Ann
    Manito, Christine
    Tesoro, Frances
    Reinke, Russell
    [J]. PLOS ONE, 2018, 13 (08):
  • [75] Advances in breeding for high grain Zinc in Rice
    Swamy, B. P. Mallikarjuna
    Rahman, Mohammad Akhlasur
    Inabangan-Asilo, Mary Ann
    Amparado, Amery
    Manito, Christine
    Chadha-Mohanty, Prabhjit
    Reinke, Russell
    Slamet-Loedin, Inez H.
    [J]. RICE, 2016, 9
  • [76] Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density
    Symonds, VV
    Godoy, AV
    Alconada, T
    Botto, JF
    Juenger, TE
    Casal, JJ
    Lloyd, AM
    [J]. GENETICS, 2005, 169 (03) : 1649 - 1658
  • [77] The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice
    Takahashi, Ryuichi
    Bashir, Khurram
    Ishimaru, Yasuhiro
    Nishizawa, Naoko K.
    Nakanishi, Hiromi
    [J]. PLANT SIGNALING & BEHAVIOR, 2012, 7 (12) : 1605 - 1607
  • [78] The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice
    Takahashi, Ryuichi
    Ishimaru, Yasuhiro
    Shimo, Hugo
    Ogo, Yuko
    Senoura, Takeshi
    Nishizawa, Naoko K.
    Nakanishi, Hiromi
    [J]. PLANT CELL AND ENVIRONMENT, 2012, 35 (11) : 1948 - 1957
  • [79] OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice
    Tan, Longtao
    Zhu, Yuxing
    Fan, Tony
    Peng, Can
    Wang, Jiurong
    Sun, Liang
    Chen, Caiyan
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 512 (01) : 112 - 118
  • [80] Regulation of zinc-dependent enzymes by metal carrier proteins
    Thompson, Michael W.
    [J]. BIOMETALS, 2022, 35 (02) : 187 - 213