Genomic prediction and QTL analysis for grain Zn content and yield in Aus-derived rice populations

被引:0
作者
Hore, Tapas Kumer [1 ,2 ,3 ]
Balachiranjeevi, C. H. [1 ]
Inabangan-Asilo, Mary Ann [1 ]
Deepak, C. A. [4 ]
Palanog, Alvin D. [2 ]
Hernandez, Jose E. [2 ]
Gregorio, Glenn B. [2 ,5 ]
Dalisay, Teresita U. [2 ]
Diaz, Maria Genaleen Q. [2 ]
Neto, Roberto Fritsche [6 ]
Kader, Md. Abdul [3 ]
Biswas, Partha Sarathi [3 ]
Swamy, B. P. Mallikarjuna [1 ]
机构
[1] Int Rice Res Inst IRRI, DAPO Box 4031, Los Banos, Laguna, Philippines
[2] Univ Philippines Los Banos UPLB, Coll Los Banos, Los Banos, Laguna, Philippines
[3] Bangladesh Rice Res Inst, Gazipur, Bangladesh
[4] Univ Agr Sci, Bangalore, Karnataka, India
[5] Southeast Asian Reg Ctr Grad Study & Res Agr SEARC, Los Banos, Philippines
[6] Louisiana State Univ, LSU Ag Ctr, Baton Rouge, LA USA
关键词
Rice; RIL; Zn; Yield; GWAS; QTL; Genes; QUANTITATIVE TRAIT LOCI; DEVELOPING-TISSUES; MINERAL ELEMENTS; ZINC; BIOFORTIFICATION; TRANSPORTER; TRANSLOCATION; ASSOCIATION; IMPROVEMENT; PROGRESS;
D O I
10.1007/s13562-024-00886-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Zinc (Zn) biofortification of rice can address Zn malnutrition in Asia. Identification and introgression of QTLs for grain Zn content and yield (YLD) can improve the efficiency of rice Zn biofortification. In four rice populations we detected 56 QTLs for seven traits by inclusive composite interval mapping (ICIM), and 16 QTLs for two traits (YLD and Zn) by association mapping. The phenotypic variance (PV) varied from 4.5% (qPN(4.1)) to 31.7% (qPH(1.1)). qDF(1.1), qDF(7.2), qDF(8.1), qPH(1.1), qPH(7.1), qPL(1.2), qPL(9.1,) qZn(5.1), qZn(5.2), qZn(6.1) and qZn(7.1) were identified in both dry and wet seasons; qZn(5.1), qZn(5.2), qZn(5.3,) qZn(6.2,) qZn(7.1) and qYLD(1.2) were detected by both ICIM and association mapping. qZn(7.1) had the highest PV (17.8%) and additive effect (2.5 ppm). Epistasis and QTL co-locations were also observed for different traits. The multi-trait genomic prediction values were 0.24 and 0.16 for YLD and Zn respectively. qZn(6.2) was co-located with a gene (OsHMA2) involved in Zn transport. These results are useful for Zn biofortificatiton of rice.
引用
收藏
页码:216 / 236
页数:21
相关论文
共 97 条
  • [41] Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
    Lyra, Danilo Hottis
    Mendonca, Leandro de Freitas
    Galli, Giovanni
    Alves, Filipe Couto
    Correia Granato, Italo Stefanine
    Fritsche-Neto, Roberto
    [J]. MOLECULAR BREEDING, 2017, 37 (06)
  • [42] Malav A. K., 2016, INT J CURR RES BIOSC, V3, P22, DOI DOI 10.20546/IJCRBP.2016.307.004
  • [43] The map-based sequence of the rice genome
    Matsumoto, T
    Wu, JZ
    Kanamori, H
    Katayose, Y
    Fujisawa, M
    Namiki, N
    Mizuno, H
    Yamamoto, K
    Antonio, BA
    Baba, T
    Sakata, K
    Nagamura, Y
    Aoki, H
    Arikawa, K
    Arita, K
    Bito, T
    Chiden, Y
    Fujitsuka, N
    Fukunaka, R
    Hamada, M
    Harada, C
    Hayashi, A
    Hijishita, S
    Honda, M
    Hosokawa, S
    Ichikawa, Y
    Idonuma, A
    Iijima, M
    Ikeda, M
    Ikeno, M
    Ito, K
    Ito, S
    Ito, T
    Ito, Y
    Ito, Y
    Iwabuchi, A
    Kamiya, K
    Karasawa, W
    Kurita, K
    Katagiri, S
    Kikuta, A
    Kobayashi, H
    Kobayashi, N
    Machita, K
    Maehara, T
    Masukawa, M
    Mizubayashi, T
    Mukai, Y
    Nagasaki, H
    Nagata, Y
    [J]. NATURE, 2005, 436 (7052) : 793 - 800
  • [44] QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations
    Meng, Lei
    Li, Huihui
    Zhang, Luyan
    Wang, Jiankang
    [J]. CROP JOURNAL, 2015, 3 (03): : 269 - 283
  • [45] Mohiuddin Shaikh J., 2020, Plant Breeding and Biotechnology, V8, P327, DOI 10.9787/PBB.2020.8.4.327
  • [46] An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies
    Morales, Karina Y.
    Singh, Namrata
    Perez, Francisco Agosto
    Ignacio, John Carlos
    Thapa, Ranjita
    Arbelaez, Juan D.
    Tabien, Rodante E.
    Famoso, Adam
    Wang, Diane R.
    Septiningsih, Endang M.
    Shi, Yuxin
    Kretzschmar, Tobias
    McCouch, Susan R.
    Thomson, Michael J.
    [J]. PLOS ONE, 2020, 15 (05):
  • [47] A transporter for delivering zinc to the developing tiller bud and panicle in rice
    Mu, Shuai
    Yamaji, Naoki
    Sasaki, Akimasa
    Luo, Le
    Du, Binbin
    Che, Jing
    Shi, Huichao
    Zhao, Haoqiang
    Huang, Sheng
    Deng, Fenglin
    Shen, Zhenguo
    Guerinot, Mary Lou
    Zheng, Luqing
    Ma, Jian Feng
    [J]. PLANT JOURNAL, 2021, 105 (03) : 786 - 799
  • [48] RAPID ISOLATION OF HIGH MOLECULAR-WEIGHT PLANT DNA
    MURRAY, MG
    THOMPSON, WF
    [J]. NUCLEIC ACIDS RESEARCH, 1980, 8 (19) : 4321 - 4325
  • [49] Multi-Trait Genomic Prediction Models Enhance the Predictive Ability of Grain Trace Elements in Rice
    Muvunyi, Blaise Pascal
    Zou, Wenli
    Zhan, Junhui
    He, Sang
    Ye, Guoyou
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [50] Biofortification in cereals: progress and prospects
    Neeraja, C. N.
    Babu, V. Ravindra
    Ram, Sewa
    Hossain, Firoz
    Hariprasanna, K.
    Rajpurohit, B. S.
    Prabhakar
    Longvah, T.
    Prasad, K. S.
    Sandhu, J. S.
    Datta, Swapan K.
    [J]. CURRENT SCIENCE, 2017, 113 (06): : 1050 - 1057