Systematic multi-trait AAV capsid engineering for efficient gene delivery

被引:6
作者
Eid, Fatma-Elzahraa [1 ,2 ]
Chen, Albert T. [1 ]
Chan, Ken Y. [1 ]
Huang, Qin [1 ]
Zheng, Qingxia [1 ]
Tobey, Isabelle G. [1 ]
Pacouret, Simon [1 ]
Brauer, Pamela P. [1 ]
Keyes, Casey [1 ]
Powell, Megan [1 ]
Johnston, Jencilin [1 ]
Zhao, Binhui [1 ]
Lage, Kasper [1 ,3 ,4 ,5 ]
Tarantal, Alice F. [6 ]
Chan, Yujia A. [1 ]
Deverman, Benjamin E. [1 ]
机构
[1] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[2] Al Azhar Univ, Fac Engn, Dept Syst & Comp Engn, Cairo, Egypt
[3] Massachusetts Gen Hosp, Dept Surg, Boston, MA USA
[4] Broad Inst MIT & Harvard, Novo Nordisk Fdn, Ctr Genom Mech Dis, Cambridge, MA USA
[5] Mental Hlth Ctr St Hans, Inst Biol Psychiat, Mental Hlth Serv, Copenhagen, Denmark
[6] Univ Calif Davis, Calif Natl Primate Res Ctr, Sch Med, Dept Cell Biol & Human Anat, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
DIRECTED EVOLUTION; TRANSDUCTION; VARIANTS;
D O I
10.1038/s41467-024-50555-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Conventional selections of AAV capsid libraries are inefficient at searching sequence space. Here the authors report 'Fit4Function', a generalizable ML approach for systematically engineering multi-trait AAV capsids, and use this to predict cross-species traits of peptide-modified AAV capsids.
引用
收藏
页数:14
相关论文
共 31 条
  • [21] Applying machine learning to predict viral assembly for adeno-associated virus capsid libraries
    Marques, Andrew D.
    Kummer, Michael
    Kondratov, Oleksandr
    Banerjee, Arunava
    Moskalenko, Oleksandr
    Zolotukhin, Sergei
    [J]. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2021, 20 : 276 - 286
  • [22] Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning
    Mason, Derek M.
    Friedensohn, Simon
    Weber, Cedric R.
    Jordi, Christian
    Wagner, Bastian
    Meng, Simon M.
    Ehling, Roy A.
    Bonati, Lucia
    Dahinden, Jan
    Gainza, Pablo
    Correia, Bruno E.
    Reddy, Sai T.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 600 - +
  • [23] Molnar C., 2020, INTERPRETABLE MACHIN
  • [24] Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning
    Nonnenmacher, Mathieu
    Wang, Wei
    Child, Matthew A.
    Ren, Xiao-Qin
    Huang, Carol
    Ren, Amy Zhen
    Tocci, Jenna
    Chen, Qingmin
    Bittner, Kelsey
    Tyson, Katherine
    Pande, Nilesh
    Chung, Charlotte Hiu-Yan
    Paul, Steven M.
    Hou, Jay
    [J]. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2021, 20 : 366 - 378
  • [25] Directed Evolution of AAV Serotype 5 for Increased Hepatocyte Transduction and Retained Low Humoral Seroreactivity
    Qian, Randolph
    Xiao, Bin
    Li, Juan
    Xiao, Xiao
    [J]. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2021, 20 : 122 - 132
  • [26] Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types
    Ravindra Kumar, Sripriya
    Miles, Timothy F.
    Chen, Xinhong
    Brown, David
    Dobreva, Tatyana
    Huang, Qin
    Ding, Xiaozhe
    Luo, Yicheng
    Einarsson, Petur H.
    Greenbaum, Alon
    Jang, Min J.
    Deverman, Benjamin E.
    Gradinaru, Viviana
    [J]. NATURE METHODS, 2020, 17 (05) : 541 - +
  • [27] Protein design and variant prediction using autoregressive generative models
    Shin, Jung-Eun
    Riesselman, Adam J.
    Kollasch, Aaron W.
    McMahon, Conor
    Simon, Elana
    Sander, Chris
    Manglik, Aashish
    Kruse, Andrew C.
    Marks, Debora S.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species
    Tabebordbar, Mohammadsharif
    Lagerborg, Kim A.
    Stanton, Alexandra
    King, Emily M.
    Ye, Simon
    Tellez, Liana
    Krunnfusz, Allison
    Tavakoli, Sahar
    Widrick, Jeffrey J.
    Messemer, Kathleen A.
    Troiano, Emily C.
    Moghadaszadeh, Behzad
    Peacker, Bryan L.
    Leacock, Krystynne A.
    Horwitz, Naftali
    Beggs, Alan H.
    Wagers, Amy J.
    Sabeti, Pardis C.
    [J]. CELL, 2021, 184 (19) : 4919 - +
  • [29] Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants
    Weinmann, Jonas
    Weis, Sabrina
    Sippel, Josefine
    Tulalamba, Warut
    Remes, Anca
    El Andari, Jihad
    Herrmann, Anne-Kathrin
    Pham, Quang H.
    Borowski, Christopher
    Hille, Susanne
    Schoenberger, Tanja
    Frey, Norbert
    Lenter, Martin
    VandenDriessche, Thierry
    Mueller, Oliver J.
    Chuah, Marinee K.
    Lamla, Thorsten
    Grimm, Dirk
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Optimal trade-off control in machine learning-based library design, with application to adeno-associated virus (AAV) for gene therapy
    Zhu, Danqing
    Brookes, David H.
    Busia, Akosua
    Carneiro, Ana
    Fannjiang, Clara
    Popova, Galina
    Shin, David
    Donohue, Kevin C.
    Lin, Li F.
    Miller, Zachary M.
    Williams, Evan R.
    Chang, Edward F.
    Nowakowski, Tomasz J.
    Listgarten, Jennifer
    Schaffer, David V.
    [J]. SCIENCE ADVANCES, 2024, 10 (04)