Systematic multi-trait AAV capsid engineering for efficient gene delivery

被引:6
作者
Eid, Fatma-Elzahraa [1 ,2 ]
Chen, Albert T. [1 ]
Chan, Ken Y. [1 ]
Huang, Qin [1 ]
Zheng, Qingxia [1 ]
Tobey, Isabelle G. [1 ]
Pacouret, Simon [1 ]
Brauer, Pamela P. [1 ]
Keyes, Casey [1 ]
Powell, Megan [1 ]
Johnston, Jencilin [1 ]
Zhao, Binhui [1 ]
Lage, Kasper [1 ,3 ,4 ,5 ]
Tarantal, Alice F. [6 ]
Chan, Yujia A. [1 ]
Deverman, Benjamin E. [1 ]
机构
[1] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[2] Al Azhar Univ, Fac Engn, Dept Syst & Comp Engn, Cairo, Egypt
[3] Massachusetts Gen Hosp, Dept Surg, Boston, MA USA
[4] Broad Inst MIT & Harvard, Novo Nordisk Fdn, Ctr Genom Mech Dis, Cambridge, MA USA
[5] Mental Hlth Ctr St Hans, Inst Biol Psychiat, Mental Hlth Serv, Copenhagen, Denmark
[6] Univ Calif Davis, Calif Natl Primate Res Ctr, Sch Med, Dept Cell Biol & Human Anat, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
DIRECTED EVOLUTION; TRANSDUCTION; VARIANTS;
D O I
10.1038/s41467-024-50555-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Conventional selections of AAV capsid libraries are inefficient at searching sequence space. Here the authors report 'Fit4Function', a generalizable ML approach for systematically engineering multi-trait AAV capsids, and use this to predict cross-species traits of peptide-modified AAV capsids.
引用
收藏
页数:14
相关论文
共 31 条
  • [1] Unified rational protein engineering with sequence-based deep representation learning
    Alley, Ethan C.
    Khimulya, Grigory
    Biswas, Surojit
    AlQuraishi, Mohammed
    Church, George M.
    [J]. NATURE METHODS, 2019, 16 (12) : 1315 - +
  • [2] Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics
    Bedbrook, Claire N.
    Yang, Kevin K.
    Robinson, J. Elliott
    Mackey, Elisha D.
    Gradinaru, Viviana
    Arnold, Frances H.
    [J]. NATURE METHODS, 2019, 16 (11) : 1176 - +
  • [3] Deep diversification of an AAV capsid protein by machine learning
    Bryant, Drew H.
    Bashir, Ali
    Sinai, Sam
    Jain, Nina K.
    Ogden, Pierce J.
    Riley, Patrick F.
    Church, George M.
    Colwell, Lucy J.
    Kelsic, Eric D.
    [J]. NATURE BIOTECHNOLOGY, 2021, 39 (06) : 691 - 696
  • [4] Check your cultures! A list of cross-contaminated or misidentified cell lines
    Capes-Davis, Amanda
    Theodosopoulos, George
    Atkin, Isobel
    Drexler, Hans G.
    Kohara, Arihiro
    MacLeod, Roderick A. F.
    Masters, John R.
    Nakamura, Yukio
    Reid, Yvonne A.
    Reddel, Roger R.
    Freshney, R. Ian
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2010, 127 (01) : 1 - 8
  • [5] Systemic AAV vectors for widespread and targeted gene delivery in rodents
    Challis, Rosemary C.
    Kumar, Sripriya Ravindra
    Chan, Ken Y.
    Challis, Collin
    Beadle, Keith
    Jang, Min J.
    Kim, Hyun Min
    Rajendran, Pradeep S.
    Tompkins, John D.
    Shivkumar, Kalyanam
    Deverman, Benjamin E.
    Gradinaru, Viviana
    [J]. NATURE PROTOCOLS, 2019, 14 (02) : 379 - 414
  • [6] Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems
    Chan, Ken Y.
    Jang, Min J.
    Yoo, Bryan B.
    Greenbaum, Alon
    Ravi, Namita
    Wu, Wei-Li
    Sanchez-Guardado, Luis
    Lois, Carlos
    Mazmanian, Sarkis K.
    Deverman, Benjamin E.
    Gradinaru, Viviana
    [J]. NATURE NEUROSCIENCE, 2017, 20 (08) : 1172 - +
  • [7] Chollet F., 2015, KERAS
  • [8] In Vivo-Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous
    Dalkara, Deniz
    Byrne, Leah C.
    Klimczak, Ryan R.
    Visel, Meike
    Yin, Lu
    Merigan, William H.
    Flannery, John G.
    Schaffer, David V.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (189)
  • [9] Twelve years of SAMtools and BCFtools
    Danecek, Petr
    Bonfield, James K.
    Liddle, Jennifer
    Marshall, John
    Ohan, Valeriu
    Pollard, Martin O.
    Whitwham, Andrew
    Keane, Thomas
    McCarthy, Shane A.
    Davies, Robert M.
    Li, Heng
    [J]. GIGASCIENCE, 2021, 10 (02):
  • [10] Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain
    Deverman, Benjamin E.
    Pravdo, Piers L.
    Simpson, Bryan P.
    Kumar, Sripriya Ravindra
    Chan, Ken Y.
    Banerjee, Abhik
    Wu, Wei-Li
    Yang, Bin
    Huber, Nina
    Pasca, Sergiu P.
    Gradinaru, Viviana
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (02) : 204 - +