Quantum Computing: Circuits, Algorithms, and Applications

被引:4
作者
Shafique, Muhammad Ali [1 ]
Munir, Arslan [2 ]
Latif, Imran [3 ]
机构
[1] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
[2] Kansas State Univ, Dept Comp Sci, Manhattan, KS 66506 USA
[3] Brookhaven Natl Lab, US Dept Energy, Upton, NY 11973 USA
关键词
Quantum computing; entanglement; interference; quantum circuits; quantum algorithms; quantum applications; COMPUTATIONAL ADVANTAGE; DISCRETE LOGARITHMS; DECOHERENCE;
D O I
10.1109/ACCESS.2024.3362955
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum computing, a transformative field that emerged from quantum mechanics and computer science, has gained immense attention for its potential to revolutionize computation. This paper aims to address the fundamentals of quantum computing and provide a comprehensive guide for both novices and experts in the field of quantum computing. Beginning with the foundational principles of quantum computing, we introduce readers to the fundamental concepts of qubits, superposition, entanglement, interference, and noise. We explore quantum hardware, quantum gates, and basic quantum circuits. This study offers insight into the current phase of quantum computing, including the noisy intermediate-scale quantum (NISQ) era and its potential for solving real-world problems. Furthermore, we discuss the development of quantum algorithms and their applications, with a focus on famous algorithms like Shor's algorithm and Grover's algorithm. We also touch upon quantum computing's impact on various industries, such as cryptography, optimization, machine learning, and material science. By the end of this paper, readers will have a solid understanding of quantum computing's principles, applications, and the steps involved in developing quantum circuits. Our goal is to provide a valuable resource for those eager to embark on their quantum computing journey and for researchers looking to stay updated on this rapidly evolving field.
引用
收藏
页码:22296 / 22314
页数:19
相关论文
共 101 条
  • [1] Supervised learning with a quantum classifier using multi-level systems
    Adhikary, Soumik
    Dangwal, Siddharth
    Bhowmik, Debanjan
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (03)
  • [2] Adiabatic quantum computation
    Albash, Tameem
    Lidar, Daniel A.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [3] A Quantum Neural Network Regression for Modeling Lithium-ion Battery Capacity Degradation
    Anh Phuong Ngo
    Nhat Le
    Nguyen, Hieu T.
    Eroglu, Abdullah
    Nguyen, Duong T.
    [J]. 2023 IEEE GREEN TECHNOLOGIES CONFERENCE, GREENTECH, 2023, : 164 - 168
  • [4] [Anonymous], Projectq-An Open Source Software Framework for Quantum Computing
  • [5] Aradyamath P., 2019, Int. J. Informat. Visualizat., V3, P59
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Unlocking the Potential of Quantum Machine Learning to Advance Drug Discovery
    Avramouli, Maria
    Savvas, Ilias K. K.
    Vasilaki, Anna
    Garani, Georgia
    [J]. ELECTRONICS, 2023, 12 (11)
  • [8] Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage
    Babbush, Ryan
    McClean, Jarrod R.
    Newman, Michael
    Gidney, Craig
    Boixo, Sergio
    Neven, Hartmut
    [J]. PRX QUANTUM, 2021, 2 (01):
  • [9] Bar Niyazi Furkan, 2022, 2022 INT C DAT AN BU, DOI DOI 10.1109/ICDABI56818.2022.10041570
  • [10] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503