Classification Model Using Transfer Learning for the Detection of Pneumonia in Chest X-Ray Images

被引:1
|
作者
Nino, Gisella Luisa Elena Maquen- [1 ]
Nunez-Fernandez, Jhojan Genaro [2 ]
Taquila-Calderon, Fany Yesica [2 ]
Adrianzen-Olano, Ivan [3 ]
De-La-Cruz-VdV, Percy [2 ]
Carrion-Barco, Gilberto [1 ]
机构
[1] Univ Nacl Pedro Ruiz Gallo, Lambayeque, Peru
[2] Univ Nacl Mayor San Marcos, Lima, Peru
[3] Univ Nacl Toribio Rodriguez De Mendoza Amazonas, Amazonas, Peru
关键词
classification models; transfer learning; convolutional neural networks (CNNs); pneumonia; data augmentation; image data generator; NETWORKS;
D O I
10.3991/ijoe.v20i05.45277
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the current global context, there has been a significant increase in respiratory system diseases, particularly pneumonia. This disease has a higher incidence of mortality in children under five years old and adults over 60 years old because it leads to complications if not treated in time. This research leverages convolutional neural networks (CNNs) to classify images, specifically to detect the presence of pneumonia. The data processing methodology utilized in this study is CRISP-DM. The dataset consists of 5,856 images of anteroposterior chest X-rays downloaded from the open repository "Kaggle," divided into 5,216 images for training, 16 for validation, and 624 for testing. Preprocessing involved image augmentation through modifications to the original images, scaling, and batch division in tensor format. A comparative analysis was conducted among the transfer models: DenseNet, VGG19, and ResNet50 version 2. Each transfer model was the header of a CNN with four subsequent layers. The models underwent training, validation, and testing phases. The test's results showed that DenseNet achieved an accuracy of 0.87, VGG19 achieved 0.86, and ResNet50 achieved 0.91. These results affirm the effectiveness of ResNet50 in image classification, considering that the model's output is binary, where 0 represents that the patient does not have pneumonia and 1 indicates that the patient has pneumonia.
引用
收藏
页码:150 / 161
页数:12
相关论文
共 50 条
  • [21] PneumoniaNet: Automated Detection and Classification of Pediatric Pneumonia Using Chest X-ray Images and CNN Approach
    Alsharif, Roaa
    Al-Issa, Yazan
    Alqudah, Ali Mohammad
    Qasmieh, Isam Abu
    Mustafa, Wan Azani
    Alquran, Hiam
    ELECTRONICS, 2021, 10 (23)
  • [22] Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray Images
    Aljawarneh, Shadi A.
    Al-Quraan, Romesaa
    BIG DATA, 2025, 13 (01) : 16 - 29
  • [23] Classification of COVID-19 and Pneumonia X-ray Images Using a Transfer Learning Approach
    Kishore, Sai H. R.
    Bhargavi, M. S.
    Kumar, Pavan C.
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [24] Pneumonia Detection on Chest X-Ray Using Machine Learning Paradigm
    Chandra, Tej Bahadur
    Verma, Kesari
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 21 - 33
  • [25] Automated pneumonia detection on chest X-ray images: A deep learning approach with different optimizers and transfer learning architectures
    Manickam, Adhiyaman
    Jiang, Jianmin
    Zhou, Yu
    Sagar, Abhinav
    Soundrapandiyan, Rajkumar
    Samuel, R. Dinesh Jackson
    MEASUREMENT, 2021, 184
  • [26] Automatic detection of pneumonia in chest X-ray images using textural features
    Ortiz-Toro, Cesar
    Garcia-Pedrero, Angel
    Lillo-Saavedra, Mario
    Gonzalo-Martin, Consuelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [27] A Review on Detection of Pneumonia in Chest X-ray Images Using Neural Networks
    Alapat D.J.
    Menon M.V.
    Ashok S.
    Journal of Biomedical Physics and Engineering, 2022, 12 (06) : 551 - 558
  • [28] Progressive and Combined Deep Transfer Learning for pneumonia diagnosis in chest X-ray images
    Khaled, Mamar
    Gaceb, Djamel
    Touazi, Faycal
    Otsmane, Ahmed
    Boutoutaou, Farouk
    5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302
  • [29] Efficient Pneumonia Detection in Chest X-ray Images: Leveraging Lightweight Transfer Learning for Improved Accuracy and Practicality
    Ul Ain, Bibi Qurat
    Bingcai, Chen
    PROCEEDINGS OF THE 4TH EUROPEAN SYMPOSIUM ON SOFTWARE ENGINEERING, ESSE 2023, 2024, : 89 - 98
  • [30] A systematic literature review on deep learning approaches for pneumonia detection using chest X-ray images
    Shagun Sharma
    Kalpna Guleria
    Multimedia Tools and Applications, 2024, 83 : 24101 - 24151