Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

被引:0
作者
Oyewole, Olawale Kazeem [1 ]
Jolaoso, Lateef Olakunle [2 ,3 ]
Aremu, Kazeem Olalekan [3 ,4 ]
机构
[1] Technion Israel Inst Technol, IL-32000 Haifa, Israel
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, England
[3] Sefako Makgatho Hlth Sci, Dept Math & Appl Math, POB 94, ZA-0204 Medunsa, Ga Rankuwa, South Africa
[4] Usmanu Danfodiyo Univ Sokoto, Sch Math, PMB 2346, Sokoto, Sokoto State, Nigeria
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2024年 / 64卷 / 01期
关键词
equilibrium problem; strongly pseudomonotone; strong conver- gence; Banach space; quasi-phi-nonexpansive mapping; fixed point; PROXIMAL METHOD; POINT; ALGORITHMS; CONVEXITY;
D O I
10.5666/KMJ.2024.64.1.69
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce an inertial self -adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz -like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.
引用
收藏
页码:69 / 94
页数:26
相关论文
共 34 条