Deep learning-based magnetic resonance image super-resolution: a survey

被引:1
|
作者
Ji Z. [1 ,2 ]
Zou B. [1 ,2 ]
Kui X. [1 ,2 ]
Liu J. [3 ]
Zhao W. [3 ]
Zhu C. [1 ,2 ,4 ]
Dai P. [1 ,2 ]
Dai Y. [1 ,2 ]
机构
[1] School of Computer Science and Engineering, Central South University, Changsha
[2] Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha
[3] Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha
[4] The College of Literature and Journalism, Central South University, Changsha
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Deep learning; Image super-resolution; Magnetic resonance imaging; Transformer;
D O I
10.1007/s00521-024-09890-w
中图分类号
学科分类号
摘要
Magnetic resonance imaging (MRI) is a medical imaging technique used to show anatomical structures and physiological processes of the human body. Due to limitations like image acquisition time, hardware capabilities, or uncooperative patients, the resolution of MR images is insufficient. Super-resolution (SR) is a crucial method to enhance the resolution of images without expensive scanning equipment. Recent years have witnessed significant progress in MR image super-resolution. Therefore, this survey presents a thorough overview of current developments in deep learning-based MR image super-resolution methods. In general, we can roughly divide the MRI super-resolution methods into single-contrast MR image SR methods and multi-contrast MR image SR methods. Additionally, we introduce the multi-task learning approaches about the MR image super-resolution. We also summarize other crucial topics, such as the degradation model, the definition of the super-resolution problem, the dataset, loss functions, and image quality assessment. Lastly, we indicate the challenges in the field of super-resolution and draw a conclusion to our survey. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
引用
收藏
页码:12725 / 12752
页数:27
相关论文
共 50 条
  • [1] Super-Resolution Reconstruction of Magnetic Resonance Image Based on Deep Learning
    Pan Mengxue
    Qu Ning
    Xia Yeru
    Yang Deyong
    Wang Hongyu
    Liu Wenlong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [2] Deep Learning-based Face Super-resolution: A Survey
    Jiang, Junjun
    Wang, Chenyang
    Liu, Xianming
    Ma, Jiayi
    ACM COMPUTING SURVEYS, 2023, 55 (01)
  • [3] A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution
    Li, Juncheng
    Pei, Zehua
    Li, Wenjie
    Gao, Guangwei
    Wang, Longguang
    Wang, Yingqian
    Zeng, Tieyong
    ACM COMPUTING SURVEYS, 2024, 56 (10)
  • [4] Deep Learning for Image Super-Resolution: A Survey
    Wang, Zhihao
    Chen, Jian
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3365 - 3387
  • [5] A brief survey on deep learning based image super-resolution
    祝晓斌
    Li Shanshan
    Wang Lei
    High Technology Letters, 2021, 27 (03) : 294 - 302
  • [6] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [7] A brief survey on deep learning based image super-resolution
    Zhu X.
    Li S.
    Wang L.
    High Technology Letters, 2021, 27 (03) : 294 - 302
  • [8] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [9] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [10] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, (04) : 413 - 426