Negative Type and Bi-lipschitz Embeddings into Hilbert Space

被引:0
作者
Robertson, Gavin [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Negative type; Hilbert space; Bi-lipschitz embedding; FINITE METRIC-SPACES; GRAPHS; GAP;
D O I
10.1007/s40840-024-01736-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The usual theory of negative type (andp-negative type) is heavily dependent on anembedding result of Schoenberg, which states that a metric space isometrically embedsin some Hilbert space if and only if it has 2-negative type. A generalisation of thisembedding result to the setting of bi-lipschitz embeddings was given by Linial, Londonand Rabinovich. In this article we use this newer embedding result to define the conceptof distortedp-negative type and extend much of the known theory ofp-negative typeto the setting of bi-lipschitz embeddings. In particular we show that a metric space(X,dX)hasp-negative type with distortionC(0 <= p<infinity,1 <= C<infinity) if and onlyif(X,d(X)(p/2))admits a bi-lipschitz embedding into some Hilbert space with distortionat mostC. Analogues of strictp-negative type and polygonal equalities in this newsetting are given and systematically studied. Finally, we provide explicit examples ofthese concepts in the bi-lipschitz setting for the bipartite graphsKm,n
引用
收藏
页数:16
相关论文
共 15 条
  • [1] [Anonymous], 1841, Cambridge Math. J.
  • [2] [Anonymous], 1975, Embeddings and extensions in analysis
  • [3] ON LIPSCHITZ EMBEDDING OF FINITE METRIC-SPACES IN HILBERT-SPACE
    BOURGAIN, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (1-2) : 46 - 52
  • [4] Enhanced negative type for finite metric trees
    Doust, Ian
    Weston, Anthony
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (09) : 2336 - 2364
  • [5] Asymptotic negative type properties of finite ultrametric spaces
    Doust, Ian
    Sanchez, Stephen
    Weston, Anthony
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1776 - 1793
  • [6] ROUNDNESS PROPERTIES OF ULTRAMETRIC SPACES
    Faver, Timothy
    Kochalski, Katelynn
    Murugan, Mathav Kishore
    Verheggen, Heidi
    Wesson, Elizabeth
    Weston, Anthony
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2014, 56 (03) : 519 - 535
  • [7] Polygonal equalities and virtual degeneracy in Lp-spaces
    Kelleher, Casey
    Miller, Daniel
    Osborn, Trenton
    Weston, Anthony
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 247 - 268
  • [8] Strict p-negative type of a metric space
    Li, Hanfeng
    Weston, Anthony
    [J]. POSITIVITY, 2010, 14 (03) : 529 - 545
  • [9] Least-distortion Euclidean embeddings of graphs: Products of cycles and expanders
    Linial, N
    Magen, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (02) : 157 - 171
  • [10] GEOMETRY OF GRAPHS AND SOME OF ITS ALGORITHMIC APPLICATIONS
    LINIAL, N
    LONDON, E
    RABINOVICH, Y
    [J]. COMBINATORICA, 1995, 15 (02) : 215 - 245