Nitrogen-doped carbon layer encapsulating NiFeP nanosheet arrays as high-performance electrocatalyst for oxygen evolution reaction

被引:0
|
作者
Wang, Shuai [1 ,2 ]
Shi, Weiye [1 ,2 ]
Zhou, Qin [1 ,2 ]
Zhang, Yan [1 ,2 ]
Huo, Chunqing [1 ,2 ]
Deng, Shengjue [1 ,2 ,3 ]
Lin, Shiwei [1 ,2 ]
机构
[1] Hainan Univ, Sch Mat Sci & Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
[3] Anqing Normal Univ, Sch Chem & Chem Engn, Anhui Key Lab Photoelect Magnet Funct Mat, Anqing 246011, Peoples R China
基金
中国国家自然科学基金; 海南省自然科学基金; 中国博士后科学基金;
关键词
Electrocatalyst; Oxygen evolution reaction; Low temperature plasma; NiFeP nanosheet arrays; Nitrogen-doped carbon layer; EFFICIENT; NANOPARTICLES; REDUCTION; NICOP;
D O I
10.1016/j.jallcom.2024.173933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With water electrolysis restricted to the slow kinetics of oxygen evolution reaction (OER), developing catalysts with both high activity and durability has become an urgent requirement for the development of current water electrolysis technology. Herein, we successfully prepared nitrogen-doped carbon layer encapsulating NiFe phosphide nanosheet arrays (denoted as N-C@NiFeP) catalysts by using a simple hydrothermal method combined with low temperature plasma technique. Phosphating conversion, carbonization, and nitrogen doping were realized by the same high-efficiency plasma treatment process. The nitrogen-doped carbon-coated structure modifies the NiFeP electronic structure, resulting in remarkable OER performances of N-C@NiFeP nanosheet arrays. The N-C@NiFeP nanosheet arrays possessed a tiny Tafel slope value of 27 mV dec(-1) and a low overpotential of 229 mV at 10 mA cm(-2). Meanwhile, the N-C@NiFeP nanosheet arrays also exhibited impressive long-term durability of 100 h under sequential OER testing at 100 mA cm(-2). Our work was instrumental in paving new pathways for the construction of efficient and stable OER electrocatalysts.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
    Cao, Xuecheng
    Zheng, Xiangjun
    Tian, Jinghua
    Jin, Chao
    Ke, Ke
    Yang, Ruizhi
    ELECTROCHIMICA ACTA, 2016, 191 : 776 - 783
  • [22] Iron-Doped NiCoP Porous Nanosheet Arrays as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction
    Zhang, Qiong
    Yan, Dafeng
    Nie, Zhenzhen
    Qiu, Xiaobin
    Wang, Shuangyin
    Yuan, Jianmin
    Su, Dawei
    Wang, Guoxiu
    Wu, Zhenjun
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 571 - 579
  • [23] A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions
    Zhang, Changlin
    Wang, Biwei
    Shen, Xiaochen
    Liu, Jiawei
    Kong, Xiangkai
    Chuang, Steven S. C.
    Yang, Dong
    Dong, Angang
    Peng, Zhenmeng
    NANO ENERGY, 2016, 30 : 503 - 510
  • [24] Bamboo-like nitrogen-doped carbon nanotubes encapsulated with NiFeP nanoparticles and their efficient catalysis in the oxygen evolution reaction
    Yang, Beibei
    Bin, Duan
    Tamirat, Andebet Gedamu
    Liu, Yun
    Liu, Lifeng
    Liu, Baohong
    ELECTROCHIMICA ACTA, 2020, 331
  • [25] Encapsulating CoNi nanoparticles into nitrogen-doped carbon nanotube arrays as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries
    Shen, Yu
    Yan, Feng
    Yang, Huan
    Xu, Jia
    Geng, Bo
    Liu, Lina
    Zhu, Chunling
    Zhang, Xitian
    Chen, Yujin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 842 - 852
  • [26] NiFeP nanocages Embedded in Melamine Sponge derived nitrogen doped porous carbon foam as an efficient oxygen evolution electrocatalyst
    Li, Jintang
    Zheng, Jianfeng
    Cheng, Xian
    Yue, Guanghui
    Luo, Xuetao
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 278
  • [27] Chromium ions–doped titanium nitride/nitrogen-doped carbon composites as oxygen electrocatalyst for high-performance Zn–Air battery
    Bailing Dong
    Yidan Fu
    Lina Han
    Pengfei Zheng
    Xiaoyuan Zeng
    Jie Xiao
    Peng Dong
    Yingjie Zhang
    Ionics, 2023, 29 : 4077 - 4086
  • [28] Graphene layers-wrapped FeNiP nanoparticles embedded in nitrogen-doped carbon nanofiber as an active and durable electrocatalyst for oxygen evolution reaction
    Mo, Rong
    Wang, Sa
    Li, Hongxing
    Li, Jin
    Yang, Sui
    Zhong, Jianxin
    ELECTROCHIMICA ACTA, 2018, 290 : 649 - 656
  • [29] Nitrogen-Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as High-Performance Bifunctional Electrocatalysts
    Zheng, Dandan
    Ci, Suqin
    Cai, Pingwei
    Wang, Genxiang
    Wen, Zhenhai
    CHEMELECTROCHEM, 2019, 6 (10): : 2683 - 2688
  • [30] Controllable synthesis of three-dimensional nitrogen-doped graphene as a high performance electrocatalyst for oxygen reduction reaction
    Lu, Xuewei
    Li, Zhongfang
    Yin, Xiaoyan
    Wang, Suwen
    Liu, Yurong
    Wang, Yuxin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (27) : 17504 - 17513