Explanatory argumentation in natural language for correct and incorrect medical diagnoses

被引:0
作者
Molinet, Benjamin [1 ]
Marro, Santiago [1 ]
Cabrio, Elena [1 ]
Villata, Serena [1 ]
机构
[1] Univ Cote Azur, CNRS, INRIA, I3S, F-06900 Sophia Antipolis, Alpes Maritimes, France
来源
JOURNAL OF BIOMEDICAL SEMANTICS | 2024年 / 15卷 / 01期
关键词
AI in medicine; Natural language processing; Information extraction; Argument-based natural language explanations; Healthcare; RECOGNITION; INFERENCE; RESOURCE; SYSTEM;
D O I
10.1186/s13326-024-00306-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background A huge amount of research is carried out nowadays in Artificial Intelligence to propose automated ways to analyse medical data with the aim to support doctors in delivering medical diagnoses. However, a main issue of these approaches is the lack of transparency and interpretability of the achieved results, making it hard to employ such methods for educational purposes. It is therefore necessary to develop new frameworks to enhance explainability in these solutions.Results In this paper, we present a novel full pipeline to generate automatically natural language explanations for medical diagnoses. The proposed solution starts from a clinical case description associated with a list of correct and incorrect diagnoses and, through the extraction of the relevant symptoms and findings, enriches the information contained in the description with verified medical knowledge from an ontology. Finally, the system returns a pattern-based explanation in natural language which elucidates why the correct (incorrect) diagnosis is the correct (incorrect) one. The main contribution of the paper is twofold: first, we propose two novel linguistic resources for the medical domain (i.e, a dataset of 314 clinical cases annotated with the medical entities from UMLS, and a database of biological boundaries for common findings), and second, a full Information Extraction pipeline to extract symptoms and findings from the clinical cases and match them with the terms in a medical ontology and to the biological boundaries. An extensive evaluation of the proposed approach shows the our method outperforms comparable approaches.Conclusions Our goal is to offer AI-assisted educational support framework to form clinical residents to formulate sound and exhaustive explanations for their diagnoses to patients.
引用
收藏
页数:22
相关论文
共 99 条
  • [41] Johnson RH, 2012, Manifest Rationality: A Pragmatic Theory of Argument, P408, DOI [10.4324/9781410606174, DOI 10.4324/9781410606174]
  • [42] Josephson J.R., 1994, Abductive Inference, DOI DOI 10.1016/J.PRAGMA.2004.06.008
  • [43] Jullien M, 2023, Arxiv, DOI arXiv:2305.02993
  • [44] Kanakarajan KR., 2021, P 20 WORKSH BIOM LAN, P143, DOI [DOI 10.18653/V1/2021.BIONLP-1.16, 10.18653/v1/2021.bionlp-1.16]
  • [45] Khetan V, 2023, Int Work Semantic Ev, P2266
  • [46] Kim J.D., 2009, P BIONLP 2009 WORKSH, P1
  • [47] The Human Phenotype Ontology in 2021
    Koehler, Sebastian
    Gargano, Michael
    Matentzoglu, Nicolas
    Carmody, Leigh C.
    Lewis-Smith, David
    Vasilevsky, Nicole A.
    Danis, Daniel
    Balagura, Ganna
    Baynam, Gareth
    Brower, Amy M.
    Callahan, Tiffany J.
    Chute, Christopher G.
    Est, Johanna L.
    Galer, Peter D.
    Ganesan, Shiva
    Griese, Matthias
    Haimel, Matthias
    Pazmandi, Julia
    Hanauer, Marc
    Harris, Nomi L.
    Hartnett, Michael J.
    Hastreiter, Maximilian
    Hauck, Fabian
    He, Yongqun
    Jeske, Tim
    Kearney, Hugh
    Kindle, Gerhard
    Klein, Christoph
    Knoflach, Katrin
    Krause, Roland
    Lagorce, David
    McMurry, Julie A.
    Miller, Jillian A.
    Munoz-Torres, Monica C.
    Peters, Rebecca L.
    Rapp, Christina K.
    Rath, Ana M.
    Rind, Shahmir A.
    Rosenberg, Avi Z.
    Segal, Michael M.
    Seidel, Markus G.
    Smedley, Damian
    Talmy, Tomer
    Thomas, Yarlalu
    Wiafe, Samuel A.
    Xian, Julie
    Yueksel, Zafer
    Helbig, Ingo
    Mungall, Christopher J.
    Haendel, Melissa A.
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D1207 - D1217
  • [48] Med7: A transferable clinical natural language processing model for electronic health records
    Kormilitzin, Andrey
    Vaci, Nemanja
    Liu, Qiang
    Nevado-Holgado, Alejo
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 118
  • [49] The CHEMDNER corpus of chemicals and drugs and its annotation principles
    Krallinger, Martin
    Rabal, Obdulia
    Leitner, Florian
    Vazquez, Miguel
    Salgado, David
    Lu, Zhiyong
    Leaman, Robert
    Lu, Yanan
    Ji, Donghong
    Lowe, Daniel M.
    Sayle, Roger A.
    Batista-Navarro, Riza Theresa
    Rak, Rafal
    Huber, Torsten
    Rocktaschel, Tim
    Matos, Serergio
    Campos, David
    Tang, Buzhou
    Xu, Hua
    Munkhdalai, Tsendsuren
    Ryu, Keun Ho
    Ramanan, S. V.
    Nathan, Senthil
    Zitnik, Slavko
    Bajec, Marko
    Weber, Lutz
    Irmer, Matthias
    Akhondi, Saber A.
    Kors, Jan A.
    Xu, Shuo
    An, Xin
    Sikdar, Utpal Kumar
    Ekbal, Asif
    Yoshioka, Masaharu
    Dieb, Thaer M.
    Choi, Miji
    Verspoor, Karin
    Khabsa, Madian
    Giles, C. Lee
    Liu, Hongfang
    Ravikumar, Komandur Elayavilli
    Lamurias, Andre
    Couto, Francisco M.
    Dai, Hong-Jie
    Tsai, Richard Tzong-Han
    Ata, Caglar
    Can, Tolga
    Usie, Anabel
    Alves, Rui
    Segura-Bedmar, Isabel
    [J]. JOURNAL OF CHEMINFORMATICS, 2015, 7
  • [50] Kumar Sawan, 2020, P 58 ANN M ASS COMPU, P8730