On Point Estimators for Gamma and Beta Distributions

被引:1
作者
Papadatos, Nickos D. [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
关键词
Asymptotic efficiency; Beta distribution; Delta-method; Gamma distribution; Stein-type covariance identity; U-statistics; Unbiased estimation; Ye-Chen-type closed-form estimators; CLOSED-FORM ESTIMATORS; RATIO;
D O I
10.1080/00031305.2024.2332766
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1,& mldr;,X-n be a random sample from the Gamma distribution with density f(x)=lambda(alpha)x(alpha-1)e(-lambda x)/Gamma(alpha), x>0, where both alpha>0 (the shape parameter) and lambda>0 (the reciprocal scale parameter) are unknown. The main result shows that the uniformly minimum variance unbiased estimator (UMVUE) of the shape parameter, alpha, exists if and only if n >= 4; moreover, it has finite variance if and only if n >= 6. More precisely, the form of the UMVUE is given for all parametric functions alpha, lambda, 1/alpha and 1/lambda. Furthermore, a highly efficient estimating procedure for the two-parameter Beta distribution is also given. This is based on a Stein-type covariance identity for the Beta distribution, followed by an application of the theory of U-statistics and the delta-method.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 9 条