An Estimate of Approximation of an Analytic Function of Two Matrices by a Polynomial

被引:1
作者
Kurbatov, V. G. [1 ]
Kurbatova, I. V. [2 ]
机构
[1] Voronezh State Univ, Dept Syst Anal & Control, Voronezh 394018, Russia
[2] Voronezh State Univ, Dept Software Dev & Informat Syst, Voronezh 394018, Russia
关键词
function of a two matrices; matrix polynomial; tensor products bivariate interpolation; error estimate; BIVARIATE LAGRANGE INTERPOLATION; PADUA POINTS; EQUATION;
D O I
10.1134/S1995080224601206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U, V subset of C be open convex sets, and z(1), z(2),..., z(N) is an element of U and w(1), w(2),..., w(M) is an element of V be (maybe repetitive) points. Let f : U x V -> C be an analytic function. Let the interpolating polynomial p be determined by the values of f on the rectangular grid (z(i), w(j)), i = 1, 2,..., N, j = 1, 2,..., M. Let A and B be matrices of the sizes n x n and m x m, respectively. The function f of A and B can be defined by the formula f(A, B) = 1/(2 pi i)(2) integral(Gamma 1)integral(Gamma 2) f(lambda, mu)(lambda 1 - A)(-1) circle times (mu 1 - B)(-1) d mu d lambda, where Gamma(1) and Gamma(2) surround the spectra sigma(A) and sigma(B), respectively; p(A, B) is defined in the same way. An estimate of || f(A, B) - p(A, B)|| is given.
引用
收藏
页码:1442 / 1462
页数:21
相关论文
共 50 条
[21]   Handelman’s Positivstellensatz for polynomial matrices positive definite on polyhedra [J].
Công-Trình Lê ;
Thị-Hòa-Bình Dư .
Positivity, 2018, 22 :449-460
[22]   ERROR ESTIMATE FOR GODUNOV APPROXIMATION OF LOCALLY CONSTRAINED CONSERVATION LAWS [J].
Cances, Clement ;
Seguin, Nicolas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :3036-3060
[23]   Approximation of the Bivariate Renewal Function [J].
Arunachalam, Viswanathan ;
Calvache, Alvaro .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (01) :154-167
[24]   Finite Fourier Frame Approximation Using the Inverse Polynomial Reconstruction Method [J].
Chen, Xinjuan ;
Jung, Jae-Hun ;
Gelb, Anne .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) :1127-1147
[25]   Discontinuous Galerkin method based on non-polynomial approximation spaces [J].
Yuan, Ling ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) :295-323
[26]   Analytic functional calculus for two operators [J].
Kurbatov, V. G. ;
Kurbatova, I. V. ;
Oreshina, M. N. .
ADVANCES IN OPERATOR THEORY, 2021, 6 (04)
[27]   An Error Estimate for the Approximation of Linear Parabolic Equations by the Gradient Discretization Method [J].
Droniou, J. ;
Eymard, R. ;
Gallouet, T. ;
Guichard, C. ;
Herbin, R. .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 :371-379
[28]   Error estimate for a simple two-level discretization of stream function form of the Navier-Stokes equations [J].
Shao, Xinping ;
Han, Danfu .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) :9943-9952
[29]   Approximation of and by the Riemann Zeta-Function [J].
Gauthier, Paul M. .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2010, 10 (02) :603-638
[30]   Optimal error estimates of the partition of unity method with local polynomial approximation spaces [J].
Huang, YQ ;
Li, W ;
Su, F .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) :365-372