Machine learning screening of metal-ion battery electrode materials

被引:0
|
作者
Moses, Isaiah A. [1 ]
Joshi, Rajendra P. [2 ]
Ozdemir, Burak [3 ]
Kumar, Neeraj [2 ]
Eickholt, Jesse [4 ]
Barone, Veronica [1 ,5 ]
机构
[1] Science of Advanced Materials Program, Central Michigan University, Mount Pleasant,MI,48859, United States
[2] Pacific Northwest National Laboratory, Richland,WA,99352, United States
[3] Department of Physics, Faculty of Science, University of Ostrava, 30 dubna 22, Ostrava,70103, Czech Republic
[4] Department of Computer Science, Central Michigan University, Mount Pleasant,MI,48859, United States
[5] Department of Physics, Central Michigan University, Mount Pleasant,MI,48859, United States
来源
ACS Applied Materials and Interfaces | 2021年 / 13卷 / 45期
关键词
All Open Access; Green;
D O I
暂无
中图分类号
学科分类号
摘要
Metal ions
引用
收藏
页码:53355 / 53362
相关论文
共 50 条
  • [1] Machine Learning Screening of Metal-Ion Battery Electrode Materials
    Moses, Isaiah A.
    Joshi, Rajendra P.
    Ozdemir, Burak
    Kumar, Neeraj
    Eickholt, Jesse
    Barone, Veronica
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (45) : 53355 - 53362
  • [2] Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries
    Joshi, Rajendra P.
    Eickholt, Jesse
    Li, Liling
    Fornari, Marco
    Barone, Veronica
    Peraltata, Juan E.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) : 18494 - 18503
  • [3] Order and disorder in metal-ion battery materials
    Abakumov, Artem
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C15 - C15
  • [4] Carbonyl polymeric electrode materials for metal-ion batteries
    Mi Tang
    Hongyang Li
    Erjing Wang
    Chengliang Wang
    Chinese Chemical Letters, 2018, 29 (02) : 232 - 244
  • [5] Carbonyl polymeric electrode materials for metal-ion batteries
    Tang, Mi
    Li, Hongyang
    Wang, Erjing
    Wang, Chengliang
    CHINESE CHEMICAL LETTERS, 2018, 29 (02) : 232 - 244
  • [6] Machine Learning As a Tool to Accelerate the Search for New Materials for Metal-Ion Batteries
    Osipov, V. T.
    Gongola, M. I.
    Morkhova, Ye. A.
    Nemudryi, A. P.
    Kabanov, A. A.
    DOKLADY MATHEMATICS, 2023, 108 (SUPPL 2) : S476 - S483
  • [7] Application of deep learning for informatics aided design of electrode materials in metal-ion batteries
    Ma, Bin
    Zhang, Lisheng
    Wang, Wentao
    Yu, Hanqing
    Yang, Xianbin
    Chen, Siyan
    Wang, Huizhi
    Liu, Xinhua
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (05) : 877 - 889
  • [8] Application of deep learning for informatics aided design of electrode materials in metal-ion batteries
    Bin Ma
    Lisheng Zhang
    Wentao Wang
    Hanqing Yu
    Xianbin Yang
    Siyan Chen
    Huizhi Wang
    Xinhua Liu
    Green Energy & Environment, 2024, 9 (05) : 877 - 889
  • [9] Application of deep learning for informatics aided design of electrode materials in metal-ion batteries
    Bin Ma
    Lisheng Zhang
    Wentao Wang
    Hanqing Yu
    Xianbin Yang
    Siyan Chen
    Huizhi Wang
    Xinhua Liu
    Green Energy & Environment, 2024, (05) : 877 - 889
  • [10] Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation
    Yu, Tong
    Wang, Chunyang
    Yang, Huicong
    Li, Feng
    JOURNAL OF ENERGY CHEMISTRY, 2024, 90 : 191 - 204