Regulatory and Sensing Iron-Sulfur Clusters: New Insights and Unanswered Questions

被引:4
作者
Santamaria, Anna M. [1 ]
Rouault, Tracey A. [1 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Huma, Mol Med Branch, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
iron-sulfur clusters; iron metabolism; iron sensing; IRE; PAIR; Aft1/2; IRP1/2; RirA; Yap5; ACO1; IREB2; HSCB; CELLULAR IRON; SACCHAROMYCES-CEREVISIAE; RESPONSIVE ELEMENT; MESSENGER-RNA; NCOA4-MEDIATED FERRITINOPHAGY; NUTRITIONAL IMMUNITY; MEDICAL PROGRESS; GENE-EXPRESSION; STRESS-RESPONSE; 4FE-4S CLUSTER;
D O I
10.3390/inorganics12040101
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Iron is an essential nutrient and necessary for biological functions from DNA replication and repair to transcriptional regulation, mitochondrial respiration, electron transfer, oxygen transport, photosynthesis, enzymatic catalysis, and nitrogen fixation. However, due to iron's propensity to generate toxic radicals which can cause damage to DNA, proteins, and lipids, multiple processes regulate the uptake and distribution of iron in living systems. Understanding how intracellular iron metabolism is optimized and how iron is utilized to regulate other intracellular processes is important to our overall understanding of a multitude of biological processes. One of the tools that the cell utilizes to regulate a multitude of functions is the ligation of the iron-sulfur (Fe-S) cluster cofactor. Fe-S clusters comprised of iron and inorganic sulfur are ancient components of living matter on earth that are integral for physiological function in all domains of life. FeS clusters that function as biological sensors have been implicated in a diverse group of life from mammals to bacteria, fungi, plants, and archaea. Here, we will explore the ways in which cells and organisms utilize Fe-S clusters to sense changes in their intracellular environment and restore equilibrium.
引用
收藏
页数:20
相关论文
共 214 条
  • [1] Chemistry and biology of eukaryotic iron metabolism
    Aisen, P
    Enns, C
    Wessling-Resnick, M
    [J]. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2001, 33 (10) : 940 - 959
  • [2] Anderson GJ, 2001, IUBMB LIFE, V51, P11, DOI 10.1080/15216540152035000
  • [3] The IRP1-HIF-2α Axis Coordinates Iron and Oxygen Sensing with Erythropoiesis and Iron Absorption
    Anderson, Sheila A.
    Nizzi, Christopher P.
    Chang, Yuan-I.
    Deck, Kathryn M.
    Schmidt, Paul J.
    Galy, Bruno
    Damnernsawad, Alisa
    Broman, Aimee T.
    Kendziorski, Christina
    Hentze, Matthias W.
    Fleming, Mark D.
    Zhang, Jing
    Eisenstein, Richard S.
    [J]. CELL METABOLISM, 2013, 17 (02) : 282 - 290
  • [4] Forging a field: the golden age of iron biology
    Andrews, Nancy C.
    [J]. BLOOD, 2008, 112 (02) : 219 - 230
  • [5] Iron homeostasis: Insights from genetics and animal models
    Andrews, NC
    [J]. NATURE REVIEWS GENETICS, 2000, 1 (03) : 208 - 217
  • [6] Medical progress: Disorders of iron metabolism
    Andrews, NC
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1999, 341 (26) : 1986 - 1995
  • [7] The iron transporter DMT1
    Andrews, NC
    [J]. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1999, 31 (10) : 991 - 994
  • [8] Bacterial iron homeostasis
    Andrews, SC
    Robinson, AK
    Rodríguez-Quiñones, F
    [J]. FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) : 215 - 237
  • [9] Ferritin, Cellular Iron Storage and Regulation
    Arosio, Paolo
    Elia, Leonardo
    Poli, Maura
    [J]. IUBMB LIFE, 2017, 69 (06) : 414 - 422
  • [10] THE FET3 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES A MULTICOPPER OXIDASE REQUIRED FOR FERROUS IRON UPTAKE
    ASKWITH, C
    EIDE, D
    VANHO, A
    BERNARD, PS
    LI, LT
    DAVISKAPLAN, S
    SIPE, DM
    KAPLAN, J
    [J]. CELL, 1994, 76 (02) : 403 - 410