Artificial intelligence-based classification of cardiac autonomic neuropathy from retinal fundus images in patients with diabetes: The Silesia Diabetes Heart Study

被引:1
|
作者
Nabrdalik, Katarzyna [1 ,2 ,3 ]
Irlik, Krzysztof [2 ,3 ,4 ,5 ]
Meng, Yanda [2 ,3 ,6 ]
Kwiendacz, Hanna [1 ]
Piasnik, Julia [4 ]
Hendel, Mirela [4 ]
Ignacy, Pawel [5 ]
Kulpa, Justyna [4 ]
Kegler, Kamil [4 ]
Herba, Mikolaj [4 ]
Boczek, Sylwia [4 ]
Hashim, Effendy Bin [2 ,3 ,6 ,7 ]
Gao, Zhuangzhi [2 ,3 ]
Gumprecht, Janusz [1 ]
Zheng, Yalin [2 ,3 ,6 ,7 ]
Lip, Gregory Y. H. [2 ,3 ,8 ]
Alam, Uazman [2 ,3 ,9 ,10 ]
机构
[1] Med Univ Silesia, Fac Med Sci Zabrze, Dept Internal Med Diabetol & Nephrol, Katowice, Poland
[2] Univ Liverpool, Liverpool John Moores Univ, Liverpool Ctr Cardiovasc Sci, Liverpool, England
[3] Liverpool Heart & Chest Hosp, Liverpool, Lancs, England
[4] Med Univ Silesia, Fac Med Sci Zabrze, Students Sci Assoc, Dept Internal Med Diabetol & Nephrol, Katowice, Poland
[5] Med Univ Silesia, Doctoral Sch, Dept Internal Med Diabetol & Nephrol, Fac Med Sci Zabrze, Katowice, Poland
[6] Univ Liverpool, Inst Life Course & Med Sci, Dept Eye & Vis Sci, Liverpool, Merseyside, England
[7] Royal Liverpool Univ Hosp, Pauls Eye Unit, Liverpool, Lancs, England
[8] Aalborg Univ, Danish Ctr Hlth Serv Res, Dept Clin Med, Aalborg, Denmark
[9] Univ Liverpool, Diabet & Endocrinol Res & Pain Res Inst, Inst Life Course & Med Sci, Liverpool, Lancs, England
[10] Liverpool Univ Hosp NHS Fdn Trust, Liverpool, Lancs, England
关键词
Cardiac autonomic neuropathy; Artificial intelligence; Retinal imaging; Deep learning; Cardiovascular risk assessment; PREDICTION; INDIVIDUALS; DIAGNOSIS;
D O I
10.1186/s12933-024-02367-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundCardiac autonomic neuropathy (CAN) in diabetes mellitus (DM) is independently associated with cardiovascular (CV) events and CV death. Diagnosis of this complication of DM is time-consuming and not routinely performed in the clinical practice, in contrast to fundus retinal imaging which is accessible and routinely performed. Whether artificial intelligence (AI) utilizing retinal images collected through diabetic eye screening can provide an efficient diagnostic method for CAN is unknown.MethodsThis was a single center, observational study in a cohort of patients with DM as a part of the Cardiovascular Disease in Patients with Diabetes: The Silesia Diabetes-Heart Project (NCT05626413). To diagnose CAN, we used standard CV autonomic reflex tests. In this analysis we implemented AI-based deep learning techniques with non-mydriatic 5-field color fundus imaging to identify patients with CAN. Two experiments have been developed utilizing Multiple Instance Learning and primarily ResNet 18 as the backbone network. Models underwent training and validation prior to testing on an unseen image set.ResultsIn an analysis of 2275 retinal images from 229 patients, the ResNet 18 backbone model demonstrated robust diagnostic capabilities in the binary classification of CAN, correctly identifying 93% of CAN cases and 89% of non-CAN cases within the test set. The model achieved an area under the receiver operating characteristic curve (AUCROC) of 0.87 (95% CI 0.74-0.97). For distinguishing between definite or severe stages of CAN (dsCAN), the ResNet 18 model accurately classified 78% of dsCAN cases and 93% of cases without dsCAN, with an AUCROC of 0.94 (95% CI 0.86-1.00). An alternate backbone model, ResWide 50, showed enhanced sensitivity at 89% for dsCAN, but with a marginally lower AUCROC of 0.91 (95% CI 0.73-1.00).ConclusionsAI-based algorithms utilising retinal images can differentiate with high accuracy patients with CAN. AI analysis of fundus images to detect CAN may be implemented in routine clinical practice to identify patients at the highest CV risk.Trial registrationThis is a part of the Silesia Diabetes-Heart Project (Clinical-Trials.gov Identifier: NCT05626413).
引用
收藏
页数:10
相关论文
共 36 条
  • [21] An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study
    Torrente, Maria
    Sousa, Pedro A.
    Hernandez, Roberto
    Blanco, Mariola
    Calvo, Virginia
    Collazo, Ana
    Guerreiro, Gracinda R.
    Nunez, Beatriz
    Pimentao, Joao
    Sanchez, Juan Cristobal
    Campos, Manuel
    Costabello, Luca
    Novacek, Vit
    Menasalvas, Ernestina
    Vidal, Maria Esther
    Provencio, Mariano
    CANCERS, 2022, 14 (16)
  • [22] Artificial intelligence-assisted management of retinal detachment from ultra-widefield fundus images based on weakly-supervised approach
    Li, Huimin
    Cao, Jing
    You, Kun
    Zhang, Yuehua
    Ye, Juan
    FRONTIERS IN MEDICINE, 2024, 11
  • [23] Effects of High-Dose α-Lipoic Acid on Heart Rate Variability of Type 2 Diabetes Mellitus Patients with Cardiac Autonomic Neuropathy in Korea
    Lee, Sol Jae
    Jeong, Su Jin
    Lee, Yu Chang
    Lee, Yong Hoon
    Lee, Jung Eun
    Kim, Chong Hwa
    Min, Kyung Wan
    Cha, Bong Yun
    DIABETES & METABOLISM JOURNAL, 2017, 41 (04) : 275 - 283
  • [24] Neutrophil-to-Lymphocyte Ratio as a Marker for Cardiac Autonomic Neuropathy in Egyptian Patients With Type 2 Diabetes: A Cross-Sectional Study
    Assaad-Khalil, Samir H.
    Aaty, Talaat Abdel
    El Feky, Mohamed
    Naby, Hoda Mohamed Abdel
    El Essawy, Nada Ramadan
    Amin, Noha Gaber
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (06)
  • [25] Cardiac autonomic neuropathy in patients with diabetes and no symptoms of coronary artery disease: comparison of 123I-metaiodobenzylguanidine myocardial scintigraphy and heart rate variability
    Arthur J. H. A. Scholte
    Joanne D. Schuijf
    Victoria Delgado
    Jurriaan A. Kok
    Mieke T. J. Bus
    Arie C. Maan
    Marcel P. Stokkel
    Antje V. Kharagitsingh
    Petra Dibbets-Schneider
    Ernst E. van der Wall
    Jeroen J. Bax
    European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37 : 1698 - 1705
  • [26] Cardiac autonomic neuropathy in patients with diabetes and no symptoms of coronary artery disease: comparison of 123I-metaiodobenzylguanidine myocardial scintigraphy and heart rate variability
    Scholte, Arthur J. H. A.
    Schuijf, Joanne D.
    Delgado, Victoria
    Kok, Jurriaan A.
    Bus, Mieke T. J.
    Maan, Arie C.
    Stokkel, Marcel P.
    Kharagitsingh, Antje V.
    Dibbets-Schneider, Petra
    van der Wall, Ernst E.
    Bax, Jeroen J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (09) : 1698 - 1705
  • [27] Prevalence and Correlates of Cardiovascular Autonomic Neuropathy Among Patients with Diabetes in Uganda: A Hospital-Based Cross-sectional Study
    Migisha, Richard
    Agaba, David Collins
    Katamba, Godfrey
    Kwaga, Teddy
    Tumwesigye, Raymond
    Miranda, Silvia Lopez
    Muyingo, Anthony
    Siedner, Mark J.
    GLOBAL HEART, 2020, 15 (01)
  • [28] Perception of artificial intelligence-based solutions in healthcare among people with and without diabetes: A cross-sectional survey from the health in Central Denmark cohort
    Schaarup, Jonas F. R.
    Aggarwal, Ravi
    Dalsgaard, Else -Marie
    Norman, Kasper
    Dollerup, Ole Lindgard
    Ashra, Hutan
    Witte, Daniel R.
    Sandbaek, Annelli
    Hulman, Adam
    DIABETES EPIDEMIOLOGY AND MANAGEMENT, 2023, 9
  • [29] Effect of Artificial Intelligence-based Health Education Accurately Linking System (AI-HEALS) for Type 2 diabetes self-management: protocol for a mixed-methods study
    Wu, Yibo
    Min, Hewei
    Li, Mingzi
    Shi, Yuhui
    Ma, Aijuan
    Han, Yumei
    Gan, Yadi
    Guo, Xiaohui
    Sun, Xinying
    BMC PUBLIC HEALTH, 2023, 23 (01)
  • [30] Prevalence of cardiovascular autonomic neuropathy in an admixed population of patients with type 1 diabetes. Lessons from a pioneer multicentre study in Brazil
    Tannus, Lucianne Righeti Monteiro
    Pedrosa, Hermelinda Cordeiro
    Aguiar, Cejana Hamu
    Drummond, Karla Guerra
    Pinheiro, Andre
    Leal, Franz Schubert
    Negrato, Carlos Antonio
    Gomes, Marilia Brito
    PRIMARY CARE DIABETES, 2024, 18 (05) : 539 - 546