Artificial intelligence-based classification of cardiac autonomic neuropathy from retinal fundus images in patients with diabetes: The Silesia Diabetes Heart Study

被引:1
|
作者
Nabrdalik, Katarzyna [1 ,2 ,3 ]
Irlik, Krzysztof [2 ,3 ,4 ,5 ]
Meng, Yanda [2 ,3 ,6 ]
Kwiendacz, Hanna [1 ]
Piasnik, Julia [4 ]
Hendel, Mirela [4 ]
Ignacy, Pawel [5 ]
Kulpa, Justyna [4 ]
Kegler, Kamil [4 ]
Herba, Mikolaj [4 ]
Boczek, Sylwia [4 ]
Hashim, Effendy Bin [2 ,3 ,6 ,7 ]
Gao, Zhuangzhi [2 ,3 ]
Gumprecht, Janusz [1 ]
Zheng, Yalin [2 ,3 ,6 ,7 ]
Lip, Gregory Y. H. [2 ,3 ,8 ]
Alam, Uazman [2 ,3 ,9 ,10 ]
机构
[1] Med Univ Silesia, Fac Med Sci Zabrze, Dept Internal Med Diabetol & Nephrol, Katowice, Poland
[2] Univ Liverpool, Liverpool John Moores Univ, Liverpool Ctr Cardiovasc Sci, Liverpool, England
[3] Liverpool Heart & Chest Hosp, Liverpool, Lancs, England
[4] Med Univ Silesia, Fac Med Sci Zabrze, Students Sci Assoc, Dept Internal Med Diabetol & Nephrol, Katowice, Poland
[5] Med Univ Silesia, Doctoral Sch, Dept Internal Med Diabetol & Nephrol, Fac Med Sci Zabrze, Katowice, Poland
[6] Univ Liverpool, Inst Life Course & Med Sci, Dept Eye & Vis Sci, Liverpool, Merseyside, England
[7] Royal Liverpool Univ Hosp, Pauls Eye Unit, Liverpool, Lancs, England
[8] Aalborg Univ, Danish Ctr Hlth Serv Res, Dept Clin Med, Aalborg, Denmark
[9] Univ Liverpool, Diabet & Endocrinol Res & Pain Res Inst, Inst Life Course & Med Sci, Liverpool, Lancs, England
[10] Liverpool Univ Hosp NHS Fdn Trust, Liverpool, Lancs, England
关键词
Cardiac autonomic neuropathy; Artificial intelligence; Retinal imaging; Deep learning; Cardiovascular risk assessment; PREDICTION; INDIVIDUALS; DIAGNOSIS;
D O I
10.1186/s12933-024-02367-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundCardiac autonomic neuropathy (CAN) in diabetes mellitus (DM) is independently associated with cardiovascular (CV) events and CV death. Diagnosis of this complication of DM is time-consuming and not routinely performed in the clinical practice, in contrast to fundus retinal imaging which is accessible and routinely performed. Whether artificial intelligence (AI) utilizing retinal images collected through diabetic eye screening can provide an efficient diagnostic method for CAN is unknown.MethodsThis was a single center, observational study in a cohort of patients with DM as a part of the Cardiovascular Disease in Patients with Diabetes: The Silesia Diabetes-Heart Project (NCT05626413). To diagnose CAN, we used standard CV autonomic reflex tests. In this analysis we implemented AI-based deep learning techniques with non-mydriatic 5-field color fundus imaging to identify patients with CAN. Two experiments have been developed utilizing Multiple Instance Learning and primarily ResNet 18 as the backbone network. Models underwent training and validation prior to testing on an unseen image set.ResultsIn an analysis of 2275 retinal images from 229 patients, the ResNet 18 backbone model demonstrated robust diagnostic capabilities in the binary classification of CAN, correctly identifying 93% of CAN cases and 89% of non-CAN cases within the test set. The model achieved an area under the receiver operating characteristic curve (AUCROC) of 0.87 (95% CI 0.74-0.97). For distinguishing between definite or severe stages of CAN (dsCAN), the ResNet 18 model accurately classified 78% of dsCAN cases and 93% of cases without dsCAN, with an AUCROC of 0.94 (95% CI 0.86-1.00). An alternate backbone model, ResWide 50, showed enhanced sensitivity at 89% for dsCAN, but with a marginally lower AUCROC of 0.91 (95% CI 0.73-1.00).ConclusionsAI-based algorithms utilising retinal images can differentiate with high accuracy patients with CAN. AI analysis of fundus images to detect CAN may be implemented in routine clinical practice to identify patients at the highest CV risk.Trial registrationThis is a part of the Silesia Diabetes-Heart Project (Clinical-Trials.gov Identifier: NCT05626413).
引用
收藏
页数:10
相关论文
共 36 条
  • [1] Artificial intelligence-enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes
    Irlik, Krzysztof
    Aldosari, Hanadi
    Hendel, Mirela
    Kwiendacz, Hanna
    Piasnik, Julia
    Kulpa, Justyna
    Ignacy, Pawel
    Boczek, Sylwia
    Herba, Mikolaj
    Kegler, Kamil
    Coenen, Frans
    Gumprecht, Janusz
    Zheng, Yalin
    Lip, Gregory Y. H.
    Alam, Uazman
    Nabrdalik, Katarzyna
    DIABETES OBESITY & METABOLISM, 2024, 26 (07) : 2624 - 2633
  • [2] Direct Classification of Type 2 Diabetes From Retinal Fundus Images in a Population-based Sample From The Maastricht Study
    Heslinga, Friso G.
    Pluim, Josien P. W.
    Houben, A. J. H. M.
    Schram, Miranda T.
    Henry, Ronald M. A.
    Stehouwer, Coen D. A.
    van Greevenbroek, Marleen J.
    Berendschot, Tos T. J. M.
    Veta, Mitko
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [3] Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images
    Haider, Adnan
    Arsalan, Muhammad
    Lee, Min Beom
    Owais, Muhammad
    Mahmood, Tahir
    Sultan, Haseeb
    Park, Kang Ryoung
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
  • [4] An Innovative Artificial Intelligence-Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study
    Shen, Jiayi
    Chen, Jiebin
    Zheng, Zequan
    Zheng, Jiabin
    Liu, Zherui
    Song, Jian
    Wong, Sum Yi
    Wang, Xiaoling
    Huang, Mengqi
    Fang, Po-Han
    Jiang, Bangsheng
    Tsang, Winghei
    He, Zonglin
    Liu, Taoran
    Akinwunmi, Babatunde
    Wang, Chi Chiu
    Zhang, Casper J. P.
    Huang, Jian
    Ming, Wai-Kit
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (09)
  • [5] Cardiac autonomic neuropathy in patients with type 2 diabetes mellitus having peripheral neuropathy: A cross-sectional study
    Haq, Tahniyah
    Ahmed, Tofail
    Latif, Zafar A.
    Sayeed, Mohammad A.
    Ashrafuzzaman, Sheikh M.
    DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2019, 13 (02) : 1523 - 1528
  • [6] Heart rate variability evaluation in the assessment of cardiac autonomic neuropathy in patients with type 2 diabetes
    Metelka, Rudolf
    Cibickova, Lubica
    Gajdova, Jaromira
    Krystynik, Ondrej
    COR ET VASA, 2018, 60 (04) : E335 - E344
  • [7] Artificial intelligence-based classification of breast lesion from contrast enhanced mammography: a multicenter study
    Zhang, Haicheng
    Lin, Fan
    Zheng, Tiantian
    Gao, Jing
    Wang, Zhongyi
    Zhang, Kun
    Zhang, Xiang
    Xu, Cong
    Zhao, Feng
    Xie, Haizhu
    Li, Qin
    Cao, Kun
    Gu, Yajia
    Mao, Ning
    INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (05) : 2593 - 2603
  • [8] Efficacy of artificial intelligence-based screening for diabetic retinopathy in type 2 diabetes mellitus patients
    Pei, Xiaoting
    Yao, Xi
    Yang, Yingrui
    Zhang, Hongmei
    Xia, Mengting
    Huang, Ranran
    Wang, Yuming
    Li, Zhijie
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2022, 184
  • [9] Predicting Systemic Health Features from Retinal Fundus Images Using Transfer-Learning-Based Artificial Intelligence Models
    Khan, Nergis C.
    Perera, Chandrashan
    Dow, Eliot R.
    Chen, Karen M.
    Mahajan, Vinit B.
    Mruthyunjaya, Prithvi
    Do, Diana, V
    Leng, Theodore
    Myung, David
    DIAGNOSTICS, 2022, 12 (07)
  • [10] Application of Artificial Intelligence for Classification, Segmentation, Early Detection, Early Diagnosis, and Grading of Diabetic Retinopathy From Fundus Retinal Images: A Comprehensive Review
    Rajarajeshwari, G.
    Selvi, G. Chemmalar
    IEEE ACCESS, 2024, 12 : 172499 - 172536