ChatMOF: an artificial intelligence system for predicting and generating metal-organic frameworks using large language models

被引:48
作者
Kang, Yeonghun [1 ]
Kim, Jihan [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41467-024-48998-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ChatMOF is an artificial intelligence (AI) system that is built to predict and generate metal-organic frameworks (MOFs). By leveraging a large-scale language model (GPT-4, GPT-3.5-turbo, and GPT-3.5-turbo-16k), ChatMOF extracts key details from textual inputs and delivers appropriate responses, thus eliminating the necessity for rigid and formal structured queries. The system is comprised of three core components (i.e., an agent, a toolkit, and an evaluator) and it forms a robust pipeline that manages a variety of tasks, including data retrieval, property prediction, and structure generations. ChatMOF shows high accuracy rates of 96.9% for searching, 95.7% for predicting, and 87.5% for generating tasks with GPT-4. Additionally, it successfully creates materials with user-desired properties from natural language. The study further explores the merits and constraints of utilizing large language models (LLMs) in combination with database and machine learning in material sciences and showcases its transformative potential for future advancements. LLMs can be augmented with tools to increase their capabilities. Here, authors have developed an artificial intelligence system called ChatMOF combining LLMs and specialised libraries and utilities to predict and generate metal-organic frameworks.
引用
收藏
页数:13
相关论文
共 80 条
[1]   Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation [J].
Altintas, Cigdem ;
Altundal, Omer Faruk ;
Keskin, Seda ;
Yildirim, Ramazan .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (05) :2131-2146
[2]  
Biovia D.S., 2017, Materials studio, R2
[3]  
Bommasani R, 2021, arXiv, DOI DOI 10.48550/ARXIV.2108.07258
[4]  
Bran A.M., 2023, NEURIPS 2023 AI SCI
[5]  
Bran AM, 2023, Arxiv, DOI [arXiv:2310.06083, DOI 10.48550/ARXIV.2310.06083, 10.48550/arXiv.2310.06083]
[6]  
Brown TB, 2020, ADV NEUR IN, V33
[7]  
Bubeck S, 2023, Arxiv, DOI arXiv:2303.12712
[8]   Identification Schemes for Metal-Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis [J].
Bucior, Benjamin J. ;
Rosen, Andrew S. ;
Haranczyk, Maciej ;
Yao, Zhenpeng ;
Ziebel, Michael E. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Siepmann, J. Ilja ;
Aspuru-Guzik, Alan ;
Snurr, Randall Q. .
CRYSTAL GROWTH & DESIGN, 2019, 19 (11) :6682-6697
[9]   Property Prediction of Crystalline Solids from Composition and Crystal Structure [J].
Calfa, Bruno A. ;
Kitchin, John R. .
AICHE JOURNAL, 2016, 62 (08) :2605-2613
[10]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998