Fast Two-Grid Finite Element Algorithm for a Fractional Klein-Gordon Equation

被引:0
作者
Jia, Jingwei [1 ,2 ]
Wang, Nian [1 ]
Liu, Yang [1 ]
Li, Hong [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot, Peoples R China
[2] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 02期
基金
中国国家自然科学基金;
关键词
Fractional Klein-Gordon equation; SCQ scheme; spatial two-grid finite element method; NUMERICAL-SIMULATION; SINE-GORDON; DIFFUSION; SCHEME;
D O I
10.37256/cm.5220244041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose a spatial two-grid finite element algorithm combined with a shifted convolution quadrature (SCQ) formula for solving the fractional Klein-Gordon equation. The time direction at t(n -) (theta) . is approximated utilizing a second-order SCQ formula, where theta is an arbitrary constant. The spatial discretization is performed using a two-grid finite element method involving three steps: calculating the numerical solution by solving a nonlinear system iteratively on the coarse grid, obtaining the interpolation solution based on the computed solutions in the first step, and solving a linear finite element system on the fine grid. We present a numerical algorithm, validate the two-grid finite element method's effectiveness, and demonstrate the computational efficiency for our method by the comparison of the computing results between the two-grid finite element method and the standard finite element method.
引用
收藏
页码:1294 / 1310
页数:17
相关论文
共 50 条
  • [41] Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method
    Nagy, A. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 139 - 148
  • [42] A Two-Grid Finite-Volume Method for the Schrodinger Equation
    Zhang, Hongmei
    Yin, Jianghua
    Jin, Jicheng
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (01) : 176 - 190
  • [43] Analytic solutions of the space-time conformable fractional Klein-Gordon equation in general form
    Culha, Sevil
    Dascioglu, Aysegul
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (04) : 775 - 790
  • [44] Analytical investigation of the fractional Klein-Gordon equation along with analysis of bifurcation, sensitivity and chaotic behaviors
    Gu, Yongyi
    Lai, Yongkang
    [J]. MODERN PHYSICS LETTERS B, 2025,
  • [45] Analytical study of D-dimensional fractional Klein-Gordon equation with a fractional vector plus a scalar potential
    Das, Tapas
    Ghosh, Uttam
    Sarkar, Susmita
    Das, Shantanu
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [46] Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations
    Gu, Qiling
    Chen, Yanping
    Huang, Yunqing
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08)
  • [47] An auxiliary equation technique and exact solutions for a nonlinear Klein-Gordon equation
    Lv, Xiumei
    Lai, Shaoyong
    Wu, YongHong
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 82 - 90
  • [48] Numerical study of the non-linear time fractional Klein-Gordon equation using the Pseudo-spectral method
    Mirzaei, Soheila
    Shokri, Ali
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2025, 13 (02): : 479 - 493
  • [49] A New Perspective on The Numerical Solution for Fractional Klein Gordon Equation
    Karaagac, Berat
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    [J]. JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2019, 22 (02): : 443 - 451
  • [50] The POD-based reduced-dimension study on the two-grid finite element method for the nonlinear time-fractional wave equation
    He, Liang
    Sun, Yihui
    Chen, Zhenglong
    Teng, Fei
    Shen, Chao
    Luo, Zhendong
    [J]. AIMS MATHEMATICS, 2025, 10 (02): : 3408 - 3427