Explainable Artificial Intelligence (XAI) and Supervised Machine Learning-based Algorithms for Prediction of Surface Roughness of Additively Manufactured Polylactic Acid (PLA) Specimens

被引:18
作者
Mishra, Akshansh [1 ]
Jatti, Vijaykumar S. [2 ]
Sefene, Eyob Messele [3 ]
Paliwal, Shivangi [4 ]
机构
[1] Politecn Milan, Sch Ind & Informat Engn, I-20121 Milan, Italy
[2] Symbiosis Inst Technol, Dept Mech Engn, Pune 412115, India
[3] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 10607, Taiwan
[4] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA
来源
APPLIED MECHANICS | 2023年 / 4卷 / 02期
关键词
additive manufacturing; explainable artificial intelligence; machine learning; supervised learning; surface roughness; structural integrity; PROCESSING PARAMETERS; REGRESSION;
D O I
10.3390/applmech4020034
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Structural integrity is a crucial aspect of engineering components, particularly in the field of additive manufacturing (AM). Surface roughness is a vital parameter that significantly influences the structural integrity of additively manufactured parts. This research work focuses on the prediction of the surface roughness of additive-manufactured polylactic acid (PLA) specimens using eight different supervised machine learning regression-based algorithms. For the first time, explainable AI techniques are employed to enhance the interpretability of the machine learning models. The nine algorithms used in this study are Support Vector Regression, Random Forest, XGBoost, AdaBoost, CatBoost, Decision Tree, the Extra Tree Regressor, the Explainable Boosting Model (EBM), and the Gradient Boosting Regressor. This study analyzes the performance of these algorithms to predict the surface roughness of PLA specimens, while also investigating the impacts of individual input parameters through explainable AI methods. The experimental results indicate that the XGBoost algorithm outperforms the other algorithms with the highest coefficient of determination value of 0.9634. This value demonstrates that the XGBoost algorithm provides the most accurate predictions for surface roughness compared with other algorithms. This study also provides a comparative analysis of the performance of all the algorithms used in this study, along with insights derived from explainable AI techniques.
引用
收藏
页码:668 / 698
页数:31
相关论文
共 40 条
[1]   Additive manufacturing: Challenges, trends, and applications [J].
Abdulhameed, Osama ;
Al-Ahmari, Abdulrahman ;
Ameen, Wadea ;
Mian, Syed Hammad .
ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (02)
[2]  
Alloghani M., 2020, Supervised and Unsupervised Learning for Data Science, P3, DOI [10.1007/978-3-030-22475-2_1, DOI 10.1007/978-3-030-22475-2_1]
[3]   An Introduction to Machine Learning [J].
Badillo, Solveig ;
Banfai, Balazs ;
Birzele, Fabian ;
Davydov, Iakov I. ;
Hutchinson, Lucy ;
Kam-Thong, Tony ;
Siebourg-Polster, Juliane ;
Steiert, Bernhard ;
Zhang, Jitao David .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (04) :871-885
[4]   Metal additive manufacturing in aerospace: A review [J].
Blakey-Milner, Byron ;
Gradl, Paul ;
Snedden, Glen ;
Brooks, Michael ;
Pitot, Jean ;
Lopez, Elena ;
Leary, Martin ;
Berto, Filippo ;
du Plessis, Anton .
MATERIALS & DESIGN, 2021, 209
[5]   Reinforcement Learning, Fast and Slow [J].
Botvinick, Matthew ;
Ritter, Sam ;
Wang, Jane X. ;
Kurth-Nelson, Zeb ;
Blundell, Charles ;
Hassabis, Demis .
TRENDS IN COGNITIVE SCIENCES, 2019, 23 (05) :408-422
[6]  
Burkart N, 2021, J ARTIF INTELL RES, V70, P245
[7]  
Chauhan H., 2013, Int. J. Sci. Res. Publ, V3, P1
[8]   Introduction to Machine Learning, Neural Networks, and Deep Learning [J].
Choi, Rene Y. ;
Coyner, Aaron S. ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. ;
Campbell, J. Peter .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02)
[9]  
Christa Sharon, 2022, International Journal of Business Information Systems, V39, P379, DOI 10.1504/IJBIS.2022.122342
[10]  
El Bouchefry K., 2020, KNOWLEDGE DISCOVERY, P225, DOI [DOI 10.1016/B978-0-12-819154-5.00023-0, 10.1016/B978-0-12-819154-5.00023-0]