Convergence in φ-variation for Mellin-type nonlinear integral operators

被引:0
作者
Aslan, Ismail [1 ]
机构
[1] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkiye
关键词
Mellin-type operators; Convergence in phi-variation; phi-absolutely continuous functions; Summability process; EXPONENTIAL-SAMPLING METHOD; APPROXIMATION;
D O I
10.1007/s41478-024-00760-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we examine Mellin-type nonlinear integral operators equipped with the Haar measure. Using phi-absolutely continuous functions, we obtain some approximations via summability process. Order of convergence is also observed. In addition, we have a general characterization theorem for phi-absolutely continuous functions. Finally, we give an application of our study with some illustrations and numerical computations.
引用
收藏
页码:2709 / 2731
页数:23
相关论文
共 36 条
  • [21] Casasent D., 1978, TOP APPL PHYS, P241
  • [22] Gori F., 1993, Springer Texts in Electrical Engr., P37
  • [23] Hardy G.H., 1949, Divergent Series
  • [24] Convergence in Variation for Bernstein-Type Operators
    Ilarslan, Hatice Gul Ince
    Bascanbaz-Tunca, Gulen
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2577 - 2592
  • [25] Convergence of the Bernstein-Durrmeyer Operators in Variation Seminorm
    Karsli, Harun
    Yilik, Ozlem Oksuzer
    Yesildal, Fatma Tasdelen
    [J]. RESULTS IN MATHEMATICS, 2017, 72 (03) : 1257 - 1270
  • [26] A CONTRIBUTION TO THE THEORY OF DIVERGENT SEQUENCES
    LORENTZ, GG
    [J]. ACTA MATHEMATICA, 1948, 80 (03) : 167 - 190
  • [27] Love ER., 1937, Fundamenta Mathematicae, V28, P43, DOI [10.4064/fm-28-1-243-257, DOI 10.4064/FM-28-1-243-257]
  • [28] Mamedov R. G., 1991, The Mellin transform and approximation theory
  • [29] MUSIELAK J, 1983, LECT NOTES MATH, V1034, P1
  • [30] Musielak J., 1959, I. Studia Math, V18, P11