Ensemble learning framework for fleet-based anomaly detection using wind turbine drivetrain components vibration data.

被引:2
作者
Munguba, Caio Filipe de Lima [2 ,4 ]
Leite, Gustavo de Novaes Pires [1 ,2 ]
Farias, Felipe Costa [1 ]
da Costa, Alexandre Carlos Araujo [2 ]
Vilela, Olga de Castro [2 ]
Perruci, Valentin Paschoal [2 ]
Brennand, Leonardo de Petribu [2 ]
de Souza, Marrison Gabriel Guedes [3 ]
Villa, Alvaro Antonio Ochoa [1 ,4 ]
Droguett, Enrique Lopez [5 ,6 ]
机构
[1] IFPE Fed Inst Educ Sci & Technol Pernambuco, DACI CACTR, Campus Recife,Ave Prof Luiz Freire 500,Cidade Univ, BR-50740 Recife, Pe, Brazil
[2] Univ Fed Pernambuco, Ctr Renewable Energy, Recife, Brazil
[3] NEOG New Energy Opt Geracao Energia, Recife, Brazil
[4] UFPE Fed Univ Pernambuco, Mech Engn Dept PPGEM, Recife, Brazil
[5] Univ Calif Los Angeles, Garrick Inst Risk Sci, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
关键词
Wind turbine; Anomaly detection; Ensemble techniques; Bearing; Gear; FAULT-DETECTION;
D O I
10.1016/j.engappai.2024.108363
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomalies in wind turbines pose significant risks of costly downtime and maintenance, underscoring the importance of early detection for reliable operation. However, conventional fault detection methods, often reliant on standalone anomaly detection models, struggle with generalization in such complex settings, leading to suboptimal prediction performance. To address this challenge, this proposes an ensemble technique pipeline to enhance robustness by combining multiple models for anomaly detection using condition monitoring system vibration data from selected wind turbine bearings. A fleet-based anomaly detection framework was applied and improved into a comprehensive ensemble pipeline. Thus, the novelty of this study lies in the in-depth evaluation of using ensemble techniques with anomaly detection models for condition monitoring system vibration data, providing insights into the effectiveness of such an approach. In the end, the proposed pipeline attained over 84% for the receiver operating characteristic curve (AUC) across components when deployed over real unseen data, achieving 98% for AUC for the main bearing through Majority-Ensemble, 89% for AUC for the gearbox highspeed shaft bearing under key nearest neighbor stacking, 84% for AUC for the generator drive-end bearing through Voting-Hard technique and 95% for AUC for the generator non-drive-end bearing under Voting-Soft. This study demonstrates ensembles can achieve robust anomaly detection for wind turbine components, addressing generalization challenges when backed by robust pipelines.
引用
收藏
页数:23
相关论文
共 50 条
[21]   Anomaly detection using a SCADA feature extractor and machine learning to detect lightning damage on wind turbine blades [J].
Matsui, Takuto ;
Yamamoto, Kazuo ;
Ogata, Jun .
IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (06) :945-951
[22]   Cloud-based multiclass anomaly detection and categorization using ensemble learning [J].
Shahzad, Faisal ;
Mannan, Abdul ;
Javed, Abdul Rehman ;
Almadhor, Ahmad S. ;
Baker, Thar ;
Obe, Dhiya Al-Jumeily .
JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01)
[23]   Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks [J].
Xiang, Ling ;
Yang, Xin ;
Hu, Aijun ;
Su, Hao ;
Wang, Penghe .
APPLIED ENERGY, 2022, 305
[24]   Cloud-based multiclass anomaly detection and categorization using ensemble learning [J].
Faisal Shahzad ;
Abdul Mannan ;
Abdul Rehman Javed ;
Ahmad S. Almadhor ;
Thar Baker ;
Dhiya Al-Jumeily OBE .
Journal of Cloud Computing, 11
[25]   Fault detection of wind turbines using SCADA data and genetic algorithm-based ensemble learning [J].
Khan, Prince Waqas ;
Yeun, Chan Yeob ;
Byun, Yung Cheol .
ENGINEERING FAILURE ANALYSIS, 2023, 148
[26]   Vibration-Based Anomaly Detection for Induction Motors Using Machine Learning [J].
Ullah, Ihsan ;
Khan, Nabeel ;
Memon, Sufyan Ali ;
Kim, Wan-Gu ;
Saleem, Jawad ;
Manzoor, Sajjad .
SENSORS, 2025, 25 (03)
[27]   Vibration based fault diagnostics in a wind turbine planetary gearbox using machine learning [J].
Amin, Abdelrahman ;
Bibo, Amin ;
Panyam, Meghashyam ;
Tallapragada, Phanindra .
WIND ENGINEERING, 2023, 47 (01) :175-189
[28]   Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation [J].
Aziz, Usama ;
Charbonnier, Sylvie ;
Berenguer, Christophe ;
Lebranchu, Alexis ;
Prevost, Frederic .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 144
[29]   Unsupervised and non-parametric learning-based anomaly detection system using vibration sensor data [J].
Park, Seyoung ;
Kang, Jaewoong ;
Kim, Jongmo ;
Lee, Seongil ;
Sohn, Mye .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (04) :4417-4435
[30]   Unsupervised and non-parametric learning-based anomaly detection system using vibration sensor data [J].
Seyoung Park ;
Jaewoong Kang ;
Jongmo Kim ;
Seongil Lee ;
Mye Sohn .
Multimedia Tools and Applications, 2019, 78 :4417-4435