Hyers-Ulam Stability of the Coefficient Multipliers on Analytic Hilbert Spaces

被引:0
作者
Wang, Chun [1 ]
Xu, Tian-Zhou [2 ]
机构
[1] Changzhi Univ, Dept Math, 73 Baoningmen East St, Changzhi 046011, Shanxi, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, 5 Zhongguancun South St, Beijing 100081, Peoples R China
关键词
Hyers-Ulam stability; coefficient multipliers; Bergman space; Hardy space; FUNCTIONAL-EQUATION; BERGMAN; HP; OPERATORS; MAPPINGS;
D O I
10.1007/s00009-024-02673-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Hyers-Ulam stability of the coefficient multipliers on the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document} and the Bergman space A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A<^>2$$\end{document}, meanwhile, we also investigate the Hyers-Ulam stability of the coefficient multipliers between the Bergman space A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A<^>2$$\end{document} and the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document}. We give the necessary and sufficient condition for the coefficient multipliers to have the Hyers-Ulam stability on the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document}, on the Bergman space A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A<^>2$$\end{document} and between the Bergman space A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A<^>2$$\end{document} and the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document}, respectively. We also show that the best constant of Hyers-Ulam stability exists under different circumstances. Some results generalized the results of MacGregor and Zhu when p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} in MacGregor and Zhu article (Mathematika 42:413-426, 1995). Moreover, some illustrative examples are also discussed.
引用
收藏
页数:22
相关论文
共 31 条
[1]   MULTIPLIERS ON SPACES OF ANALYTIC-FUNCTIONS [J].
BLASCO, O .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (01) :44-64
[2]   A Note on Stability of an Operator Linear Equation of the Second Order [J].
Brzdek, Janusz ;
Jung, Soon-Mo .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[3]   On approximate solutions of the linear functional equation of higher order [J].
Brzdek, Janusz ;
Popa, Dorian ;
Xu, Bing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :680-689
[4]   Bounded and compact multipliers between Bergman and Hardy spaces [J].
Buckley, SM ;
Ramanujan, MS ;
Vukotic, D .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 35 (01) :1-19
[5]   APPLICATIONS OF FIXED POINT THEOREMS TO THE HYERS - ULAM STABILITY OF FUNCTIONAL EQUATIONS - A SURVEY [J].
Cieplinski, Krzysztof .
ANNALS OF FUNCTIONAL ANALYSIS, 2012, 3 (01) :151-164
[6]   Generalized stability of multi-additive mappings [J].
Cieplinski, Krzysztof .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1291-1294
[7]   ON MULTIPLIERS OF HP SPACES [J].
DUREN, PL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (01) :24-&
[8]  
Duren PL., 1970, THEORY HP SPACES
[9]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[10]   Some properties of fractional integrals II [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1932, 34 :403-439