Self-powered and self-sensing devices based on piezoelectric energy harvesting

被引:6
|
作者
Chen, Gantong [1 ]
Zhu, Yue [1 ]
Huang, Dongmei [2 ]
Zhou, Shengxi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
piezoelectric energy harvesting; self-powered; self-sensing; wearable devices; implantable devices; TRIBOELECTRIC NANOGENERATOR; MONITORING-SYSTEM; MECHANICAL ENERGY; BENDING STRENGTH; MOTION SENSOR; CARBON-BLACK; E-SKIN; PERFORMANCE; VIBRATION; HEALTH;
D O I
10.1007/s11431-023-2535-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wearable devices, interactive human-machine interface equipment, wireless sensors, and small-scale cleaning devices play crucial roles in biomedical implantation, disease treatment, health monitoring, environmental purification, etc. These devices require a sustainable energy source to work effectively. With the consideration of the global energy crisis and environmental pollution, researchers are exploring new, stable, and environmentally friendly methods to power these low-powered devices. Mechanical energy is one of the most abundant natural energy sources. Converting mechanical energy from the ambient environment or host structures into electrical energy via the direct piezoelectric effect is an efficient energy harvesting technique. This paper reviews the application of advanced piezoelectric materials, and small-scale self-powered and self-sensing piezoelectric devices at the cubic centimeter scale in energy harvesting and health monitoring of human, animal, machinery, roads, bridges, as well as the pollutant degradation of the environment. Some of these devices have the capability to not only harvest mechanical energy but also enable real-time monitoring and analysis of the electrical signals generated by the direct piezoelectric effect, facilitating prompt decision-making and appropriate responses. In addition, potential challenges and future prospects of small-scale self-powered and self-sensing piezoelectric devices are discussed.
引用
收藏
页码:1631 / 1667
页数:37
相关论文
共 50 条
  • [31] Flexible layered cotton cellulose-based nanofibrous membranes for piezoelectric energy harvesting and self-powered sensing
    Wang, Leiyang
    Cheng, Tao
    Lian, Wangwei
    Zhang, Mengxia
    Lu, Bo
    Dong, Binbin
    Tan, Kunlun
    Liu, Chuntai
    Shen, Changyu
    CARBOHYDRATE POLYMERS, 2022, 275
  • [32] The nexus of sustainable fisheries: A hybrid self-powered and self-sensing wave energy harvester
    Liu, Weizhen
    Li, Yingjie
    Tang, Hongjie
    Zhang, Zutao
    Wu, Xiaoping
    Zhao, Jie
    Zeng, Lei
    Tang, Minfeng
    Hao, Daning
    OCEAN ENGINEERING, 2024, 295
  • [33] Piezoelectric energy harvesting for self-powered wearable upper limb applications
    Liu, Yuchi
    Khanbareh, Hamideh
    Halim, Miah Abdul
    Feeney, Andrew
    Zhang, Xiaosheng
    Heidari, Hadi
    Ghannam, Rami
    NANO SELECT, 2021, 2 (08): : 1459 - 1479
  • [34] A Piezoelectric Smart Textile for Energy Harvesting and Wearable Self-Powered Sensors
    Hossain, Ishtia Zahir
    Khan, Ashaduzzaman
    Hossain, Gaffar
    ENERGIES, 2022, 15 (15)
  • [35] Energy harvesting for self-powered nanosystems
    Zhong Lin Wang
    Nano Research, 2008, 1 : 1 - 8
  • [36] A self-powered PSSHI and SECE hybrid rectifier for piezoelectric energy harvesting
    Xia, Huakang
    Xia, Yinshui
    Ye, Yidie
    Shi, Ge
    Wang, Xiudeng
    Chen, Zhidong
    IEICE ELECTRONICS EXPRESS, 2020, 17 (17):
  • [37] A self-powered switching circuit for piezoelectric energy harvesting with velocity control
    Chen, Y. -Y.
    Vasic, D.
    Costa, F.
    Wu, W. -J.
    Lee, C. -K.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2012, 57 (03):
  • [38] A High Efficiency Self-Powered Rectifier for Piezoelectric Energy Harvesting Systems
    Wang, Jingmin
    Yang, Zheng
    Zhu, Zhangming
    Yang, Yintang
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2016, 25 (12)
  • [39] Energy Harvesting for Self-Powered Nanosystems
    Wang, Zhong Lin
    NANO RESEARCH, 2008, 1 (01) : 1 - 8
  • [40] Self-Powered Piezoelectric Nanogenerator Based on Wurtzite ZnO Nanoparticles for Energy Harvesting Application
    Rahman, Wahida
    Garain, Samiran
    Sultana, Ayesha
    Middya, Tapas Ranjan
    Mandal, Dipankar
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (03) : 9826 - 9830